Search results
Results from the WOW.Com Content Network
The resistance path is the total resistance back through the supply transformer; to measure this an engineer will use an "earth fault loop impedance meter". The application of a low voltage allows a small current to pass from the socket back through earth to the supply transformer and distribution board.
The loop acts like a short circuited single-turn transformer winding; any AC magnetic flux from nearby transformers, electric motors, or just adjacent power wiring, will induce AC currents in the loop by induction. In general, the larger the area spanned by the loop and the larger the magnetic flux through it, the larger the induced currents ...
Earth continuity test: this test is to make sure the earthing system is properly connected Live testing. Earth fault loop impedance testing: this test is to check that if a fault did occur, that the system meets requirements to cause a disconnection of the supply within the time limit specified by standards Insulation resistance testing
The Murray loop and the Varley loop were two types of connections for locating faults in cables Sometimes an insulation fault in a power cable will not show up at lower voltages. A "thumper" test set applies a high-energy, high-voltage pulse to the cable. Fault location is done by listening for the sound of the discharge at the fault.
In some jurisdictions, calculations are required to ensure the fault loop impedance is low enough so that fault current will trip the protection (In Australia, this is referred to in AS3000:2007 Fault loop impedance calculation). This may limit the length of a branch circuit.
There is no 'earth wire' between the two. The fault loop impedance is higher, and unless the electrode impedance is very low indeed, a TT installation should always have an RCD (GFCI) as its first isolator. The big advantage of the TT earthing system is the reduced conducted interference from other users' connected equipment.
In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit. [1]Quantitatively, the impedance of a two-terminal circuit element is the ratio of the complex representation of the sinusoidal voltage between its terminals, to the complex representation of the current flowing through it. [2]
Language links are at the top of the page across from the title.