Search results
Results from the WOW.Com Content Network
Print/export Download as PDF; Printable version; In other projects Wikimedia Commons; ... Pages in category "Machine learning algorithms"
Printer-friendly PDF version of the Algorithms Wikibook. Licensing Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License , Version 1.2 or any later version published by the Free Software Foundation ; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
Pages for logged out editors learn more. Contributions; Talk; List of machine learning algorithms
OpenML: [494] Web platform with Python, R, Java, and other APIs for downloading hundreds of machine learning datasets, evaluating algorithms on datasets, and benchmarking algorithm performance against dozens of other algorithms. PMLB: [495] A large, curated repository of benchmark datasets for evaluating supervised machine learning algorithms ...
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]
Machine learning (ML) is a subfield of artificial intelligence within computer science that evolved from the study of pattern recognition and computational learning theory. [1] In 1959, Arthur Samuel defined machine learning as a "field of study that gives computers the ability to learn without being explicitly programmed". [ 2 ]
A step-wise schematic illustrating a generic Michigan-style learning classifier system learning cycle performing supervised learning. Keeping in mind that LCS is a paradigm for genetic-based machine learning rather than a specific method, the following outlines key elements of a generic, modern (i.e. post-XCS) LCS algorithm.
Automated machine learning (AutoML) is the process of automating the tasks of applying machine learning to real-world problems. It is the combination of automation and ML. [1] AutoML potentially includes every stage from beginning with a raw dataset to building a machine learning model ready for deployment.