enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eulerian path - Wikipedia

    en.wikipedia.org/wiki/Eulerian_path

    This is known as Euler's Theorem: A connected graph has an Euler cycle if and only if every vertex has an even number of incident edges. The term Eulerian graph has two common meanings in graph theory. One meaning is a graph with an Eulerian circuit, and the other is a graph with every vertex of even degree.

  3. Euler tour technique - Wikipedia

    en.wikipedia.org/wiki/Euler_tour_technique

    The Euler tour technique (ETT), named after Leonhard Euler, is a method in graph theory for representing trees. The tree is viewed as a directed graph that contains two directed edges for each edge in the tree. The tree can then be represented as a Eulerian circuit of the directed graph, known as the Euler tour representation (ETR) of the tree

  4. BEST theorem - Wikipedia

    en.wikipedia.org/wiki/BEST_theorem

    Here t w (G) is the number of arborescences, which are trees directed towards the root at a fixed vertex w in G. The number t w (G) can be computed as a determinant, by the version of the matrix tree theorem for directed graphs. It is a property of Eulerian graphs that t v (G) = t w (G) for every two vertices v and w in a connected Eulerian ...

  5. Graph theory - Wikipedia

    en.wikipedia.org/wiki/Graph_theory

    The paper written by Leonhard Euler on the Seven Bridges of Königsberg and published in 1736 is regarded as the first paper in the history of graph theory. [20] This paper, as well as the one written by Vandermonde on the knight problem , carried on with the analysis situs initiated by Leibniz .

  6. Tree (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Tree_(graph_theory)

    In graph theory, a tree is an undirected graph in which any two vertices are connected by exactly one path, or equivalently a connected acyclic undirected graph. [1] A forest is an undirected graph in which any two vertices are connected by at most one path, or equivalently an acyclic undirected graph, or equivalently a disjoint union of trees. [2]

  7. Cycle basis - Wikipedia

    en.wikipedia.org/wiki/Cycle_basis

    A spanning subgraph of a given graph G has the same set of vertices as G itself but, possibly, fewer edges. A graph G, or one of its subgraphs, is said to be Eulerian if each of its vertices has even degree (its number of incident edges). Every simple cycle in a graph is an Eulerian subgraph, but there may be others.

  8. Handshaking lemma - Wikipedia

    en.wikipedia.org/wiki/Handshaking_lemma

    Euler stated the fundamental results for this problem in terms of the number of odd vertices in the graph, which the handshaking lemma restricts to be an even number. If this number is zero, an Euler tour exists, and if it is two, an Euler path exists. Otherwise, the problem cannot be solved.

  9. Leonhard Euler - Wikipedia

    en.wikipedia.org/wiki/Leonhard_Euler

    Leonhard Euler (/ ˈ ɔɪ l ər / OY-lər; [b] German: [ˈleːɔnhaʁt ˈʔɔʏlɐ] ⓘ, Swiss Standard German: [ˈleɔnhard ˈɔʏlər]; 15 April 1707 – 18 September 1783) was a Swiss mathematician, physicist, astronomer, geographer, logician, and engineer who founded the studies of graph theory and topology and made pioneering and influential discoveries in many other branches of ...