enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. NP-hardness - Wikipedia

    en.wikipedia.org/wiki/NP-hardness

    As it is suspected, but unproven, that P≠NP, it is unlikely that any polynomial-time algorithms for NP-hard problems exist. [3] [4] A simple example of an NP-hard problem is the subset sum problem. Informally, if H is NP-hard, then it is at least as difficult to solve as the problems in NP.

  3. P versus NP problem - Wikipedia

    en.wikipedia.org/wiki/P_versus_NP_problem

    Informally, an NP-complete problem is an NP problem that is at least as "tough" as any other problem in NP. NP-hard problems are those at least as hard as NP problems; i.e., all NP problems can be reduced (in polynomial time) to them. NP-hard problems need not be in NP; i.e., they need not have solutions verifiable in polynomial time.

  4. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    Quadratic programming (NP-hard in some cases, P if convex) Subset sum problem [3]: SP13 Variations on the Traveling salesman problem. The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric.

  5. NP (complexity) - Wikipedia

    en.wikipedia.org/wiki/NP_(complexity)

    Euler diagram for P, NP, NP-complete, and NP-hard set of problems. Under the assumption that P ≠ NP, the existence of problems within NP but outside both P and NP-complete was established by Ladner. [1] In computational complexity theory, NP (nondeterministic polynomial time) is a complexity class used to classify decision problems.

  6. Travelling salesman problem - Wikipedia

    en.wikipedia.org/wiki/Travelling_salesman_problem

    Another related problem is the bottleneck travelling salesman problem: Find a Hamiltonian cycle in a weighted graph with the minimal weight of the weightiest edge. A real-world example is avoiding narrow streets with big buses. [15] The problem is of considerable practical importance, apart from evident transportation and logistics areas.

  7. Partition problem - Wikipedia

    en.wikipedia.org/wiki/Partition_problem

    The partition problem is NP hard. This can be proved by reduction from the subset sum problem. [6] An instance of SubsetSum consists of a set S of positive integers and a target sum T; the goal is to decide if there is a subset of S with sum exactly T.

  8. Clique problem - Wikipedia

    en.wikipedia.org/wiki/Clique_problem

    The clique decision problem is not of practical importance; it is formulated in this way in order to apply the theory of NP-completeness to clique-finding problems. [19] The clique problem and the independent set problem are complementary: a clique in G is an independent set in the complement graph of G and vice versa. [20]

  9. Closest string - Wikipedia

    en.wikipedia.org/wiki/Closest_string

    In theoretical computer science, the closest string is an NP-hard computational problem, [1] which tries to find the geometrical center of a set of input strings. To understand the word "center", it is necessary to define a distance between two strings. Usually, this problem is studied with the Hamming distance in mind.