Search results
Results from the WOW.Com Content Network
In kinematics, a five-bar linkage is a mechanism with two degrees of freedom that is constructed from five links that are connected together in a closed chain. All links are connected to each other by five joints in series forming a loop. One of the links is the ground or base. [1]
Link 1 (horizontal distance between ground joints): 4a Illustration of the limits. In kinematics, Chebyshev's linkage is a four-bar linkage that converts rotational motion to approximate linear motion. It was invented by the 19th-century mathematician Pafnuty Chebyshev, who studied theoretical problems in kinematic mechanisms.
Jansen's linkage bears artistic as well as mechanical merit for its simulation of organic walking motion using a simple rotary input. [2] These leg mechanisms have applications in mobile robotics and in gait analysis. [3] [4] The central 'crank' link moves in circles as it is actuated by a rotary actuator such as an electric motor.
Crank slider mechanisms with 0 and 1.25 eccentricity. A slider-crank linkage is a four-bar linkage with three revolute joints and one prismatic, or sliding, joint. The rotation of the crank drives the linear movement the slider, or the expansion of gases against a sliding piston in a cylinder can drive the rotation of the crank.
The Chebychev–Grübler–Kutzbach criterion determines the number of degrees of freedom of a kinematic chain, that is, a coupling of rigid bodies by means of mechanical constraints. [1] These devices are also called linkages .
PhET Interactive Simulations is part of the University of Colorado Boulder which is a member of the Association of American Universities. [10] The team changes over time and has about 16 members consisting of professors, post-doctoral students, researchers, education specialists, software engineers (sometimes contractors), educators, and administrative assistants. [11]
Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.
MSC ADAMS (Automated Dynamic Analysis of Mechanical Systems) is a multibody dynamics simulation software system. It is currently owned by MSC Software Corporation. The simulation software solver runs mainly on Fortran and more recently C++ as well. [1] According to the publisher, Adams is the most widely used multibody dynamics simulation ...