enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    The word "factorial" (originally French: factorielle) was first used in 1800 by Louis François Antoine Arbogast, [18] in the first work on Faà di Bruno's formula, [19] but referring to a more general concept of products of arithmetic progressions. The "factors" that this name refers to are the terms of the product formula for the factorial. [20]

  3. Bhargava factorial - Wikipedia

    en.wikipedia.org/wiki/Bhargava_factorial

    The factorial of a non-negative integer n, denoted by n!, is the product of all positive integers less than or equal to n. For example, 5! = 5×4×3×2×1 = 120. By convention, the value of 0! is defined as 1. This classical factorial function appears prominently in many theorems in number theory. The following are a few of these theorems. [1]

  4. Double factorial - Wikipedia

    en.wikipedia.org/wiki/Double_factorial

    In the same way that the double factorial generalizes the notion of the single factorial, the following definition of the integer-valued multiple factorial functions (multifactorials), or α-factorial functions, extends the notion of the double factorial function for positive integers : ! = {()!

  5. Falling and rising factorials - Wikipedia

    en.wikipedia.org/wiki/Falling_and_rising_factorials

    The rising factorial is also integral to the definition of the hypergeometric function: The hypergeometric function is defined for | | < by the power series (,;;) = = () ()! provided that ,,, …. Note, however, that the hypergeometric function literature typically uses the notation ( a ) n {\displaystyle (a)_{n}} for rising factorials.

  6. Factorial number system - Wikipedia

    en.wikipedia.org/wiki/Factorial_number_system

    The factorial number system is a mixed radix numeral system: the i-th digit from the right has base i, which means that the digit must be strictly less than i, and that (taking into account the bases of the less significant digits) its value is to be multiplied by (i − 1)!

  7. Derangement - Wikipedia

    en.wikipedia.org/wiki/Derangement

    (n factorial) is the number of n-permutations; !n (n subfactorial) is the number of derangements – n-permutations where all of the n elements change their initial places. In combinatorial mathematics , a derangement is a permutation of the elements of a set in which no element appears in its original position.

  8. Legendre's formula - Wikipedia

    en.wikipedia.org/wiki/Legendre's_formula

    In mathematics, Legendre's formula gives an expression for the exponent of the largest power of a prime p that divides the factorial n!. It is named after Adrien-Marie Legendre . It is also sometimes known as de Polignac's formula , after Alphonse de Polignac .

  9. Fixed-point combinator - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_combinator

    (Here we use the standard notations and conventions of lambda calculus: Y is a function that takes one argument f and returns the entire expression following the first period; the expression . ( ) denotes a function that takes one argument x, thought of as a function, and returns the expression ( ), where ( ) denotes x applied to itself ...