enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binary relation - Wikipedia

    en.wikipedia.org/wiki/Binary_relation

    The terms correspondence, [16] dyadic relation and two-place relation are synonyms for binary relation, though some authors use the term "binary relation" for any subset of a Cartesian product without reference to and , and reserve the term "correspondence" for a binary relation with reference to and .

  3. Relation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Relation_(mathematics)

    In mathematics, a relation denotes some kind of relationship between two objects in a set, which may or may not hold. [1] As an example, " is less than " is a relation on the set of natural numbers ; it holds, for instance, between the values 1 and 3 (denoted as 1 < 3 ), and likewise between 3 and 4 (denoted as 3 < 4 ), but not between the ...

  4. Idempotent relation - Wikipedia

    en.wikipedia.org/wiki/Idempotent_relation

    The composition of relations R ∘ R is the relation S defined by setting xSz to be true for a pair of elements x and z in X whenever there exists y in X with xRy and yRz both true. R is idempotent if R = S. Equivalently, relation R is idempotent if and only if the following two properties are true: R is a transitive relation, meaning that R ...

  5. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    In constructive mathematics, "not empty" and "inhabited" are not equivalent: every inhabited set is not empty but the converse is not always guaranteed; that is, in constructive mathematics, a set that is not empty (where by definition, "is empty" means that the statement () is true) might not have an inhabitant (which is an such that ).

  6. Logical matrix - Wikipedia

    en.wikipedia.org/wiki/Logical_matrix

    A logical matrix, binary matrix, relation matrix, Boolean matrix, or (0, 1)-matrix is a matrix with entries from the Boolean domain B = {0, 1}. Such a matrix can be used to represent a binary relation between a pair of finite sets. It is an important tool in combinatorial mathematics and theoretical computer science.

  7. Total relation - Wikipedia

    en.wikipedia.org/wiki/Total_relation

    In mathematics, a binary relation R ⊆ X×Y between two sets X and Y is total (or left total) if the source set X equals the domain {x : there is a y with xRy}. Conversely, R is called right total if Y equals the range {y : there is an x with xRy}. When f: X → Y is a function, the domain of f is all of X, hence f is a total relation.

  8. Dependence relation - Wikipedia

    en.wikipedia.org/wiki/Dependence_relation

    The relation , defined by if is in the subspace spanned by , is a dependence relation. This is equivalent to the definition of linear dependence . Let K {\displaystyle K} be a field extension of F . {\displaystyle F.} Define {\displaystyle \triangleleft } by α S {\displaystyle \alpha \triangleleft S} if α {\displaystyle \alpha } is algebraic ...

  9. Symmetric relation - Wikipedia

    en.wikipedia.org/wiki/Symmetric_relation

    A symmetric relation is a type of binary relation. Formally, a binary relation R over a set X is symmetric if: [1], (), where the notation aRb means that (a, b) ∈ R. An example is the relation "is equal to", because if a = b is true then b = a is also true.