Search results
Results from the WOW.Com Content Network
This can be used to calculate mean values (expectations) of the flow rates, head losses or any other variables of interest in the pipe network. This analysis has been extended using a reduced-parameter entropic formulation, which ensures consistency of the analysis regardless of the graphical representation of the network. [ 3 ]
This is a crucial parameter for pump selection and is a popularly used parameter for ascertaining industrial requirements. By eliminating the inlet head, we remove the effect of the supplied pressure to the pump and are left with only the pump’s energy (head) contribution to the fluid flow. Schematic representation of pressure heads in a pump.
With C v = 1.0 and 200 psia inlet pressure, the flow is 100 standard cubic feet per minute (scfm). The flow is proportional to the absolute inlet pressure, so the flow in scfm would equal the C v flow coefficient if the inlet pressure were reduced to 2 psia and the outlet were connected to a vacuum with less than 1 psi absolute pressure (1.0 ...
If an NPSH A is say 10 bar then the pump you are using will deliver exactly 10 bar more over the entire operational curve of a pump than its listed operational curve. Example: A pump with a max. pressure head of 8 bar (80 metres) will actually run at 18 bar if the NPSH A is 10 bar. i.e.: 8 bar (pump curve) plus 10 bar NPSH A = 18 bar.
where the pressure loss per unit length Δp / L (SI units: Pa/m) is a function of: , the density of the fluid (kg/m 3);, the hydraulic diameter of the pipe (for a pipe of circular section, this equals D; otherwise D H = 4A/P for a pipe of cross-sectional area A and perimeter P) (m);
[4] [5] [6] A generalized model of the flow distribution in channel networks of planar fuel cells. [6] Similar to Ohm's law, the pressure drop is assumed to be proportional to the flow rates. The relationship of pressure drop, flow rate and flow resistance is described as Q 2 = ∆P/R. f = 64/Re for laminar flow where Re is the Reynolds number.
The static head of a pump is the maximum height (pressure) it can deliver. The capability of the pump at a certain RPM can be read from its Q-H curve (flow vs. height). Head is useful in specifying centrifugal pumps because their pumping characteristics tend to be independent of the fluid's density. There are generally four types of head:
Consequently, an engineering model can be tested in a wind tunnel or water tunnel, pressure coefficients can be determined at critical locations around the model, and these pressure coefficients can be used with confidence to predict the fluid pressure at those critical locations around a full-size aircraft or boat.