Search results
Results from the WOW.Com Content Network
The inversion set is the set of all inversions. A permutation's inversion set using place-based notation is the same as the inverse permutation's inversion set using element-based notation with the two components of each ordered pair exchanged. Likewise, a permutation's inversion set using element-based notation is the same as the inverse ...
In most applications, f is a function from R n to R p and the set Y is a box of R p (i.e. a Cartesian product of p intervals of R). When f is nonlinear the set inversion problem can be solved [1] using interval analysis combined with a branch-and-bound algorithm. [2] The main idea consists in building a paving of R p made with non-overlapping ...
This is called circle inversion or plane inversion. The inversion taking any point P (other than O ) to its image P ' also takes P ' back to P , so the result of applying the same inversion twice is the identity transformation which makes it a self-inversion (i.e. an involution).
Any involution is a bijection.. The identity map is a trivial example of an involution. Examples of nontrivial involutions include negation (x ↦ −x), reciprocation (x ↦ 1/x), and complex conjugation (z ↦ z) in arithmetic; reflection, half-turn rotation, and circle inversion in geometry; complementation in set theory; and reciprocal ciphers such as the ROT13 transformation and the ...
In the mathematical area of order theory, every partially ordered set P gives rise to a dual (or opposite) partially ordered set which is often denoted by P op or P d.This dual order P op is defined to be the same set, but with the inverse order, i.e. x ≤ y holds in P op if and only if y ≤ x holds in P.
In the monoid of binary endorelations on a set (with the binary operation on relations being the composition of relations), the converse relation does not satisfy the definition of an inverse from group theory, that is, if is an arbitrary relation on , then does not equal the identity relation on in general.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
This is applied, e.g., in the Kalman filter and recursive least squares methods, to replace the parametric solution, requiring inversion of a state vector sized matrix, with a condition equations based solution. In case of the Kalman filter this matrix has the dimensions of the vector of observations, i.e., as small as 1 in case only one new ...