Search results
Results from the WOW.Com Content Network
The blue sky spectrum contains light at all visible wavelengths with a broad maximum around 450–485 nm, the wavelengths of the color blue. Diffuse sky radiation is solar radiation reaching the Earth 's surface after having been scattered from the direct solar beam by molecules or particulates in the atmosphere .
Within the atmosphere, Rayleigh scattering of light by air molecules, water, dust, and aerosols causes the sky's light to have a defined polarization pattern. The same elastic scattering processes cause the sky to be blue .
Blue light is scattered more than other wavelengths by the gases in the atmosphere, surrounding Earth in a visibly blue layer at the stratosphere, above the clouds of the troposphere, when seen from space on board the ISS at an altitude of 335 km (208 mi) (the Moon is visible as a crescent in the far background). [1]
Scattered blue light is polarized. The picture on the right is shot through a polarizing filter: the polarizer transmits light that is linearly polarized in a specific direction. The blue color of the sky is a consequence of three factors: [17] the blackbody spectrum of sunlight coming into the Earth's atmosphere,
An atmosphere (from Ancient Greek ἀτμός (atmós) 'vapour, steam' and σφαῖρα (sphaîra) 'sphere') [1] is a layer of gases that envelop an astronomical object, held in place by the gravity of the object. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low.
This is because long-wavelength (red) light is scattered less than blue light. The red light reaches the observer's eye, whereas the blue light is scattered out of the line of sight. Other colours in the sky, such as glowing skies at dusk and dawn. These are from additional particulate matter in the sky that scatter different colors at ...
Strong extinction in Earth's atmosphere of some wavelength regions (such as X-ray, ultraviolet, and infrared) is overcome by the use of space-based observatories. Since blue light is much more strongly attenuated than red light, extinction causes objects to appear redder than expected; this phenomenon is called interstellar reddening. [5]
The visible range of most animals evolved to match the optical window, which is the range of light that can pass through the atmosphere. The ozone layer absorbs almost all UV light (below 315 nm). [19] However, this only affects cosmic light (e.g. sunlight), not terrestrial light (e.g. Bioluminescence).