Search results
Results from the WOW.Com Content Network
Globe valve. A globe valve, different from ball valve, is a type of valve used for regulating flow in a pipeline, consisting of a movable plug or disc element and a stationary ring seat in a generally spherical body. [1] Globe valves are named for their spherical body shape with the two halves of the body being separated by an internal baffle.
A simplified version of the definition is: The k v factor of a valve indicates "The water flow in m 3 /h, at a pressure drop across the valve of 1 kgf/cm 2 when the valve is completely open. The complete definition also says that the flow medium must have a density of 1000 kg/m 3 and a kinematic viscosity of 10 −6 m 2 /s , e.g. water.
In this article, the following conventions and definitions are to be understood: The Reynolds number Re is taken to be Re = V D / ν, where V is the mean velocity of fluid flow, D is the pipe diameter, and where ν is the kinematic viscosity μ / ρ, with μ the fluid's Dynamic viscosity, and ρ the fluid's density.
The need for the hydraulic diameter arises due to the use of a single dimension in the case of a dimensionless quantity such as the Reynolds number, which prefers a single variable for flow analysis rather than the set of variables as listed in the table below. The Manning formula contains a quantity called the hydraulic radius.
Most charts or tables indicate the type of friction factor, or at least provide the formula for the friction factor with laminar flow. If the formula for laminar flow is f = 16 / Re , it is the Fanning factor f, and if the formula for laminar flow is f D = 64 / Re , it is the Darcy–Weisbach factor f D.
In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Leakage in narrow clearance, spool valve. Hydraulic clearance. Flow in narrow clearances are of vital importance in hydraulic system component design. The flow in a narrow circular clearance of a spool valve can be calculated according to the formula below if the height is negligible compared to the width of the clearance, such as most of the clearances in hydraulic pumps, hydraulic motors ...