Search results
Results from the WOW.Com Content Network
An operational amplifier (often op amp or opamp) is a DC-coupled electronic voltage amplifier with a differential input, a (usually) single-ended output, [1] and an extremely high gain. Its name comes from its original use of performing mathematical operations in analog computers .
The operational transconductance amplifier (OTA) is an amplifier that outputs a current proportional to its input voltage. Thus, it is a voltage controlled current source (VCCS). Three types of OTAs are single-input single-output, differential-input single-output, and differential-input differential-output (a.k.a. fully differential), [ 1 ...
The operational amplifier integrator is an electronic integration circuit. Based on the operational amplifier (op-amp), it performs the mathematical operation of integration with respect to time; that is, its output voltage is proportional to the input voltage integrated over time.
Power op-amp with a maximal current output of 3 amperes [23] LM709 Yes General-purpose op-amp [24] LM741 LM709 General-purpose op-amp. [25] Widely used. LM747: Yes General-purpose dual op-amp. [26] LM748 General-purpose op-amp with external compensation [27] LM833 Dual high-speed audio operational amplifiers [28] LM837 Low-noise quadruple op ...
In this case, an external push–pull amplifier can be controlled by the current into and out of the operational amplifier. Thus, the operational amplifier may itself operate within its factory specified bounds while still allowing the negative feedback path to include a large output signal well outside of those bounds. [1]
The input offset voltage is a parameter defining the differential DC voltage required between the inputs of an amplifier, especially an operational amplifier (op-amp), to make the output zero (for voltage amplifiers, 0 volts with respect to ground or between differential outputs, depending on the output type).
A differentiator circuit (also known as a differentiating amplifier or inverting differentiator) consists of an ideal operational amplifier with a resistor R providing negative feedback and a capacitor C at the input, such that: is the voltage across C (from the op amp's virtual ground negative terminal).
The LM13700 is an integrated circuit (IC) containing two current-controlled operational transconductance amplifiers (OTA), each having differential inputs and a push-pull output. [1] Linearizing diodes at the input can optionally be used by applying a bias current into I bias to reduce distortion and allow increased input levels.