Search results
Results from the WOW.Com Content Network
Examples of algorithms for this task include New Edge-Directed Interpolation (NEDI), [1] [2] Edge-Guided Image Interpolation (EGGI), [3] Iterative Curvature-Based Interpolation (ICBI), [citation needed] and Directional Cubic Convolution Interpolation (DCCI). [4] A study found that DCCI had the best scores in PSNR and SSIM on a series of test ...
Contextual image classification, a topic of pattern recognition in computer vision, is an approach of classification based on contextual information in images. "Contextual" means this approach is focusing on the relationship of the nearby pixels, which is also called neighbourhood.
SqueezeNet is a deep neural network for image classification released in 2016. SqueezeNet was developed by researchers at DeepScale , University of California, Berkeley , and Stanford University . In designing SqueezeNet, the authors' goal was to create a smaller neural network with fewer parameters while achieving competitive accuracy.
The ratio threshold for rejection is whenever it is above 0.8. This method eliminated 90% of false matches while discarding less than 5% of correct matches. To further improve the efficiency of the best-bin-first algorithm search was cut off after checking the first 200 nearest neighbor candidates.
Margin-infused relaxed algorithm; Mathematics of artificial neural networks; Multi-label classification; Multiclass classification; Multifactor dimensionality reduction; Multilayer perceptron; Multinomial logistic regression; Multiple discriminant analysis; Multispectral pattern recognition
CIFAR-10 is a set of images that can be used to teach a computer how to recognize objects. Since the images in CIFAR-10 are low-resolution (32x32), this dataset can allow researchers to quickly try different algorithms to see what works. CIFAR-10 is a labeled subset of the 80 Million Tiny Images dataset from 2008, published in 2009. When the ...
For example, a classifier (for example k-means), takes a vector of features (decision variables) and outputs for each possible classification result the probability that the vector belongs to the class. This is usually used to take a decision (classify into the class with highest probability), but cascading classifiers use this output as the ...
Images Classification 2009 [18] [36] A. Krizhevsky et al. CIFAR-100 Dataset Like CIFAR-10, above, but 100 classes of objects are given. Classes labelled, training set splits created. 60,000 Images Classification 2009 [18] [36] A. Krizhevsky et al. CINIC-10 Dataset A unified contribution of CIFAR-10 and Imagenet with 10 classes, and 3 splits.