Search results
Results from the WOW.Com Content Network
The arrays are heterogeneous: a single array can have keys of different types. PHP's associative arrays can be used to represent trees, lists, stacks, queues, and other common data structures not built into PHP. An associative array can be declared using the following syntax:
Python uses the following syntax to express list comprehensions over finite lists: S = [ 2 * x for x in range ( 100 ) if x ** 2 > 3 ] A generator expression may be used in Python versions >= 2.4 which gives lazy evaluation over its input, and can be used with generators to iterate over 'infinite' input such as the count generator function which ...
The following list contains syntax examples of how a range of element of an array can be accessed. In the following table: first – the index of the first element in the slice; last – the index of the last element in the slice; end – one more than the index of last element in the slice; len – the length of the slice (= end - first)
Support for multi-dimensional arrays may also be provided by external libraries, which may even support arbitrary orderings, where each dimension has a stride value, and row-major or column-major are just two possible resulting interpretations. Row-major order is the default in NumPy [19] (for Python).
In contrast, two-dimensional arrays are always rectangular [4] so jagged arrays should not be confused with multidimensional arrays, but the former is often used to emulate the latter. Arrays of arrays in languages such as Java, PHP, Python (multidimensional lists), Ruby, C#.NET, Visual Basic.NET , Perl, JavaScript, Objective-C, Swift, and ...
In array languages, operations are generalized to apply to both scalars and arrays. Thus, a+b expresses the sum of two scalars if a and b are scalars, or the sum of two arrays if they are arrays. An array language simplifies programming but possibly at a cost known as the abstraction penalty.
Following Lisp, other high-level programming languages which feature linked lists as primitive data structures have adopted an append. To append lists, as an operator, Haskell uses ++, OCaml uses @. Other languages use the + or ++ symbols to nondestructively concatenate a string, list, or array.
This feature can be used, for example, to extract one-dimensional slices (vectors: in 3D, rows, columns, and tubes [1]) or two-dimensional slices (rectangular matrices) from a three-dimensional array. However, since the range can be specified at run-time, type-checked languages may require an explicit (compile-time) notation to actually ...