Search results
Results from the WOW.Com Content Network
In computing, a stack trace (also called stack backtrace [1] or stack traceback [2]) is a report of the active stack frames at a certain point in time during the execution of a program. When a program is run, memory is often dynamically allocated in two places: the stack and the heap .
The stack is often used to store variables of fixed length local to the currently active functions. Programmers may further choose to explicitly use the stack to store local data of variable length. If a region of memory lies on the thread's stack, that memory is said to have been allocated on the stack, i.e. stack-based memory allocation (SBMA).
The set of values pushed for one function call is termed a "stack frame". A stack frame consists at minimum of a return address. Automatic variables are also allocated on the stack. The stack segment traditionally adjoined the heap segment and they grew towards each other; when the stack pointer met the heap pointer, free memory was exhausted.
This includes all sorts of active memory regions like code segment containing (mostly) program instructions (and occasionally constants), data segment (both initialized and uninitialized), [1] heap memory, call stack, plus memory required to hold any additional data structures, such as symbol tables, debugging data structures, open files ...
The term "segment" comes from the memory segment, which is a historical approach to memory management that has been succeeded by paging.When a program is stored in an object file, the code segment is a part of this file; when the loader places a program into memory so that it may be executed, various memory regions are allocated (in particular, as pages), corresponding to both the segments in ...
A heap overflow, heap overrun, or heap smashing is a type of buffer overflow that occurs in the heap data area. Heap overflows are exploitable in a different manner to that of stack-based overflows. Memory on the heap is dynamically allocated at runtime and typically contains program data.
The C programming language manages memory statically, automatically, or dynamically.Static-duration variables are allocated in main memory, usually along with the executable code of the program, and persist for the lifetime of the program; automatic-duration variables are allocated on the stack and come and go as functions are called and return.
Stack buffer overflow is a type of the more general programming malfunction known as buffer overflow (or buffer overrun). [1] Overfilling a buffer on the stack is more likely to derail program execution than overfilling a buffer on the heap because the stack contains the return addresses for all active function calls.