Search results
Results from the WOW.Com Content Network
In C and C++ arrays do not support the size function, so programmers often have to declare separate variable to hold the size, and pass it to procedures as a separate parameter. Elements of a newly created array may have undefined values (as in C), or may be defined to have a specific "default" value such as 0 or a null pointer (as in Java).
The Hexagonal Efficient Coordinate System (HECS), formerly known as Array Set Addressing (ASA), is a coordinate system for hexagonal grids that allows hexagonally sampled images to be efficiently stored and processed on digital systems. HECS represents the hexagonal grid as a set of two interleaved rectangular sub-arrays, which can be addressed ...
c = a + b In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also ...
The Nial example of the inner product of two arrays can be implemented using the native matrix multiplication operator. If a is a row vector of size [1 n] and b is a corresponding column vector of size [n 1]. a * b; By contrast, the entrywise product is implemented as: a .* b;
Programming languages or their standard libraries that support multi-dimensional arrays typically have a native row-major or column-major storage order for these arrays. Row-major order is used in C / C++ / Objective-C (for C-style arrays), PL/I , [ 4 ] Pascal , [ 5 ] Speakeasy , [ citation needed ] and SAS .
In computer science, an array is a data structure consisting of a collection of elements (values or variables), of same memory size, each identified by at least one array index or key. An array is stored such that the position of each element can be computed from its index tuple by a mathematical formula.
In 2018, Eric Weiss showed how to fully represent an image as a hypervector. A vector could contain information about all the objects in the image, including properties such as color, position, and size. [2] In 2023, Abbas Rahimi et al., used HDC with neural networks to solve Raven's progressive matrices. [2]
In 1985, Joseph O'Rourke published a cubic-time algorithm to find the minimum-volume enclosing box of a 3-dimensional point set. O'Rourke's approach uses a 3-dimensional rotating calipers technique, and is based on lemmas characterizing the minimum enclosing box: