Search results
Results from the WOW.Com Content Network
In a diploid cell there are two sets of homologous chromosomes of different parental origin (e.g. a paternal and a maternal set). During the phase of meiosis labeled “interphase s” in the meiosis diagram there is a round of DNA replication, so that each of the chromosomes initially present is now composed of two copies called chromatids ...
Cell division in prokaryotes (binary fission) and eukaryotes (mitosis and meiosis). The thick lines are chromosomes, and the thin blue lines are fibers pulling on the chromosomes and pushing the ends of the cell apart. The cell cycle in eukaryotes: I = Interphase, M = Mitosis, G 0 = Gap 0, G 1 = Gap 1, G 2 = Gap 2, S = Synthesis, G 3 = Gap 3.
Mechanically, the process is similar to mitosis, though its genetic results are fundamentally different. The result is the production of four haploid cells (n chromosomes; 23 in humans) from the two haploid cells (with n chromosomes, each consisting of two sister chromatids) [clarification needed] produced in meiosis I. The four main steps of ...
Sexual reproduction is a type of reproduction that involves a complex life cycle in which a gamete (haploid reproductive cells, such as a sperm or egg cell) with a single set of chromosomes combines with another gamete to produce a zygote that develops into an organism composed of cells with two sets of chromosomes . [1]
The two sister chromatids are separated from each other into two different cells during mitosis or during the second division of meiosis. Compare sister chromatids to homologous chromosomes, which are the two different copies of a chromosome that diploid organisms (like humans) inherit, one from each parent. Sister chromatids are by and large ...
The two chromosomes which pair are referred to as non-sister chromosomes, since they did not arise simply from the replication of a parental chromosome. Recombination between non-sister chromosomes at meiosis is known to be a recombinational repair process that can repair double-strand breaks and other types of double-strand damage. [2]
There are two popular and overlapping theories that explain the origins of crossing-over, coming from the different theories on the origin of meiosis.The first theory rests upon the idea that meiosis evolved as another method of DNA repair, and thus crossing-over is a novel way to replace possibly damaged sections of DNA. [9]
Synapsis during Meiosis. The circled area is the part where synapsis occurs, where the two chromatids meet before crossing over. Synapsis or Syzygy is the pairing of two chromosomes that occurs during meiosis. It allows matching-up of homologous pairs prior to their segregation, and possible chromosomal crossover between them.