Search results
Results from the WOW.Com Content Network
Helicity is a pseudo-scalar quantity: it changes sign under change from a right-handed to a left-handed frame of reference; it can be considered as a measure of the handedness (or chirality) of the flow. Helicity is one of the four known integral invariants of the Euler equations; the other three are energy, momentum and angular momentum.
It is also rotationally invariant, in that a rotation applied to the system leaves the helicity unchanged. Helicity, however, is not Lorentz invariant; under the action of a Lorentz boost, the helicity may change sign. Consider, for example, a baseball, pitched as a gyroball, so that its spin axis is aligned with the direction of the pitch. It ...
RCAPE is calculated using the same formula as CAPE, the difference in the formula being in the virtual temperature. In this new formulation, we replace the parcel saturation mixing ratio (which leads to the condensation and vanishing of liquid water) with the parcel water content. This slight change can drastically change the values we get ...
Magnetic helicity is a gauge-dependent quantity, because can be redefined by adding a gradient to it (gauge choosing).However, for perfectly conducting boundaries or periodic systems without a net magnetic flux, the magnetic helicity contained in the whole domain is gauge invariant, [15] that is, independent of the gauge choice.
The lifted index (LI) is the temperature difference between the environment Te(p) and an air parcel lifted adiabatically Tp(p) at a given pressure height in the troposphere (lowest layer where most weather occurs) of the atmosphere, usually 500 hPa . The temperature is measured in Celsius.
The Helmholtz decomposition in three dimensions was first described in 1849 [9] by George Gabriel Stokes for a theory of diffraction. Hermann von Helmholtz published his paper on some hydrodynamic basic equations in 1858, [10] [11] which was part of his research on the Helmholtz's theorems describing the motion of fluid in the vicinity of vortex lines. [11]
For example, a single Grassmann number can be thought of as generating a one-dimensional space. A vector space, the m -dimensional superspace , then appears as the m -fold Cartesian product of these one-dimensional Λ . {\displaystyle \Lambda .} [ clarification needed ] It can be shown that this is essentially equivalent to an algebra with m ...
In statistical mechanics, the Zimm–Bragg model is a helix-coil transition model that describes helix-coil transitions of macromolecules, usually polymer chains. Most models provide a reasonable approximation of the fractional helicity of a given polypeptide; the Zimm–Bragg model differs by incorporating the ease of propagation (self-replication) with respect to nucleation.