enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dispersion (optics) - Wikipedia

    en.wikipedia.org/wiki/Dispersion_(optics)

    In a dispersive prism, material dispersion (a wavelength-dependent refractive index) causes different colors to refract at different angles, splitting white light into a spectrum. A compact fluorescent lamp seen through an Amici prism. Dispersion is the phenomenon in which the phase velocity of a wave depends on its frequency. [1]

  3. Dispersive prism - Wikipedia

    en.wikipedia.org/wiki/Dispersive_prism

    This is a result of the prism material's index of refraction varying with wavelength (dispersion). Generally, longer wavelengths (red) undergo a smaller deviation than shorter wavelengths (blue). The dispersion of white light into colors by a prism led Sir Isaac Newton to conclude that white light consisted of a mixture of different colors.

  4. Free spectral range - Wikipedia

    en.wikipedia.org/wiki/Free_spectral_range

    where is the vacuum wavelength of light. For a linear cavity, such as the Fabry-Pérot interferometer [ 3 ] discussed below, L = 2 l {\displaystyle L=2l} , where L {\displaystyle L} is the distance travelled by light in one roundtrip around the closed cavity, and l {\displaystyle l} is the length of the cavity.

  5. Spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Spectroscopy

    An example of spectroscopy: a prism analyses white light by dispersing it into its component colors. Spectroscopy is the field of study that measures and interprets electromagnetic spectra . [ 1 ] [ 2 ] In narrower contexts, spectroscopy is the precise study of color as generalized from visible light to all bands of the electromagnetic spectrum.

  6. Dispersion relation - Wikipedia

    en.wikipedia.org/wiki/Dispersion_relation

    Dispersion occurs when sinusoidal waves of different wavelengths have different propagation velocities, so that a wave packet of mixed wavelengths tends to spread out in space. The speed of a plane wave, v {\displaystyle v} , is a function of the wave's wavelength λ {\displaystyle \lambda } :

  7. Optics - Wikipedia

    en.wikipedia.org/wiki/Optics

    This results in constructive interference and an increase in the amplitude of the wave, which for light is associated with a brightening of the waveform in that location. Alternatively, if the two waves of the same wavelength and frequency are out of phase, then the wave crests will align with wave troughs and vice versa.

  8. Light - Wikipedia

    en.wikipedia.org/wiki/Light

    One of Newton's arguments against the wave nature of light was that waves were known to bend around obstacles, while light travelled only in straight lines. He did, however, explain the phenomenon of the diffraction of light (which had been observed by Francesco Grimaldi) by allowing that a light particle could create a localised wave in the ...

  9. Absorption (electromagnetic radiation) - Wikipedia

    en.wikipedia.org/wiki/Absorption_(electromagnetic...

    This example shows the general principle using visible light as a specific example. A white light source—emitting light of multiple wavelengths—is focused on a sample (the pairs of complementary colors are indicated by the yellow dotted lines). Upon striking the sample, photons that match the energy gap of the molecules present (green light ...

  1. Related searches measure of location and dispersion of light in waves examples video for kids

    what is a dispersionoptics dispersion parameters
    what is dispersion in opticsdispersion velocity of optics