Search results
Results from the WOW.Com Content Network
In probability and statistics, the Kumaraswamy's double bounded distribution is a family of continuous probability distributions defined on the interval (0,1). It is similar to the beta distribution, but much simpler to use especially in simulation studies since its probability density function, cumulative distribution function and quantile functions can be expressed in closed form.
In probability theory and statistics, the beta prime distribution (also known as inverted beta distribution or beta distribution of the second kind [1]) is an absolutely continuous probability distribution. If [,] has a beta distribution, then the odds has a beta prime distribution.
It serves as an alternative to the beta and Kumaraswamy distributions for modeling double-bounded random variables. The MK distribution was originally proposed by Sagrillo, Guerra, and Bayer [1] through a transformation of the Kumaraswamy distribution. Its density exhibits an increasing-decreasing-increasing shape, which is not characteristic ...
In probability theory and statistics, an inverse distribution is the distribution of the reciprocal of a random variable. Inverse distributions arise in particular in the Bayesian context of prior distributions and posterior distributions for scale parameters .
Generalized extreme value distribution; Generalized gamma distribution; Generalized integer gamma distribution; Generalized inverse Gaussian distribution; Generalized logistic distribution; Generalized multivariate log-gamma distribution; Generalized normal distribution; Generalized Pareto distribution; Geometric stable distribution; Gompertz ...
In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] or (0, 1) in terms of two positive parameters, denoted by alpha (α) and beta (β), that appear as exponents of the variable and its complement to 1, respectively, and control the shape of the distribution.
In statistics, the inverse Wishart distribution, also called the inverted Wishart distribution, is a probability distribution defined on real-valued positive-definite matrices. In Bayesian statistics it is used as the conjugate prior for the covariance matrix of a multivariate normal distribution.
The complex inverse Wishart distribution is a matrix probability distribution defined on complex-valued positive-definite matrices and is the complex analog of the real inverse Wishart distribution. The complex Wishart distribution was extensively investigated by Goodman [ 1 ] while the derivation of the inverse is shown by Shaman [ 2 ] and others.