Search results
Results from the WOW.Com Content Network
The SED of M51 (upper right) obtained by combining data at many different wavelengths, e.g. UV, visible, and infrared (left). A spectral energy distribution (SED) is a plot of energy versus frequency or wavelength of light (not to be confused with a 'spectrum' of flux density vs frequency or wavelength). [1]
The CIE photopic luminous efficiency function y (λ) or V(λ) is a standard function established by the Commission Internationale de l'Éclairage (CIE) and standardized in collaboration with the ISO, [1] and may be used to convert radiant energy into luminous (i.e., visible) energy.
Not all wavelengths of light are equally visible, or equally effective at stimulating human vision, due to the spectral sensitivity of the human eye; radiation in the infrared and ultraviolet parts of the spectrum is useless for illumination. The luminous efficacy of a source is the product of how well it converts energy to electromagnetic ...
The luminous flux is a weighted sum of the power at all wavelengths in the visible band. Light outside the visible band does not contribute. The ratio of the total luminous flux to the radiant flux is called the luminous efficacy. This model of the human visual brightness perception, is standardized by the CIE and ISO. [5]
In frequency (and thus energy), UV rays sit between the violet end of the visible spectrum and the X-ray range. The UV wavelength spectrum ranges from 399 nm to 10 nm and is divided into 3 sections: UVA, UVB, and UVC. UV is the lowest energy range energetic enough to ionize atoms, separating electrons from them, and thus causing chemical reactions.
The photopic includes the CIE 1931 standard (solid), the Judd-Vos 1978 modified data (dashed), and the Sharpe, Stockman, Jagla & Jägle 2005 data (dotted). The horizontal axis is wavelength in nm. Photometry is a branch of optics that deals with measuring light in terms of its perceived brightness to the human eye. [1]
In modern spectrographs in the UV, visible, and near-IR spectral ranges, the spectrum is generally given in the form of photon number per unit wavelength (nm or μm), wavenumber (μm −1, cm −1), frequency (THz), or energy (eV), with the units indicated by the abscissa.
The frequency of light used in the definition corresponds to a wavelength in a vacuum of 555 nm, which is near the peak of the eye's response to light. If the 1 candela source emitted uniformly in all directions, the total radiant flux would be about 18.40 mW , since there are 4 π steradians in a sphere.