Search results
Results from the WOW.Com Content Network
In addition, cellulose is a straight chain polymer, and each cellulose molecule is long and rod-like. This differs from starch, which is a coiled molecule. A result of these differences in structure is that, compared to starch and other carbohydrates, cellulose cannot be broken down into its glucose subunits by any enzymes produced by animals.
Cellulose from wood pulp has typical chain lengths between 300 and 1700 units; cotton and other plant fibers as well as bacterial cellulose have chain lengths ranging from 800 to 10,000 units. [6] Molecules with very small chain length resulting from the breakdown of cellulose are known as cellodextrins ; in contrast to long-chain cellulose ...
In plants and some prokaryotes, glucose is a product of photosynthesis. [69] Glucose is also formed by the breakdown of polymeric forms of glucose like glycogen (in animals and mushrooms) or starch (in plants). The cleavage of glycogen is termed glycogenolysis, the cleavage of starch is called starch degradation. [87]
Glycogen is made primarily by the liver and the muscles, but can also be made by glycogenesis within the brain and stomach. [15] Glycogen is analogous to starch, a glucose polymer in plants, and is sometimes referred to as animal starch, [16] having a similar structure to amylopectin but more extensively branched and compact than starch ...
Two of the most common polysaccharides are cellulose and glycogen, both consisting of repeating glucose monomers. Cellulose is an important structural component of plant's cell walls and glycogen is used as a form of energy storage in animals. Sugar can be characterized by having reducing or non-reducing ends.
The strength and stability comes from the straighter shape of cellulose caused by glucose monomers joined by glycogen bonds. The straight shape allows the molecules to pack closely. Cellulose is very common in application due to its abundant supply, its biocompatibility, and is environmentally friendly.
The glycogen in the liver can function as a backup source of glucose between meals. [2] Liver glycogen mainly serves the central nervous system. Adrenaline stimulates the breakdown of glycogen in the skeletal muscle during exercise. [12] In the muscles, glycogen ensures a rapidly accessible energy source for movement. [2]
Because of this, it is synthesized and broken down in most plants and cyanobacteria. In fact, amylopectin seems to rival glycogen, the energy storage molecule in animals, because it is able to store more glucose units and henceforth more energy. [19] [20] The synthesis of amylopectin depends on the combined efforts of four different enzymes.