Search results
Results from the WOW.Com Content Network
The final character of a ten-digit International Standard Book Number is a check digit computed so that multiplying each digit by its position in the number (counting from the right) and taking the sum of these products modulo 11 is 0. The digit the farthest to the right (which is multiplied by 1) is the check digit, chosen to make the sum correct.
The Luhn algorithm or Luhn formula, also known as the "modulus 10" or "mod 10" algorithm, named after its creator, IBM scientist Hans Peter Luhn, is a simple check digit formula used to validate a variety of identification numbers. It is described in US patent 2950048A, granted on 23 August 1960. [1]
A UPC barcode. The Universal Product Code (UPC or UPC code) is a barcode symbology that is used worldwide for tracking trade items in stores.. The chosen symbology has bars (or spaces) of exactly 1, 2, 3, or 4 units wide each; each decimal digit to be encoded consists of two bars and two spaces chosen to have a total width of 7 units, in both an "even" and an "odd" parity form, which enables ...
The check digit (as calculated above) for this sequence is 4. Once you have calculated your check digit, simply map each character in the string to be encoded using the table above as a reference to get the binary map of the bar code; remember to precede the code with "start" and to end it with "stop" For example, to map the string 1234567 with ...
The Luhn mod N algorithm generates a check digit (more precisely, a check character) within the same range of valid characters as the input string. For example, if the algorithm is applied to a string of lower-case letters (a to z), the check character will also be a lower-case letter. Apart from this distinction, it resembles very closely the ...
There will always be 6 runs and the lengths of these 6 runs form the Widths value. For example, using the pattern 10100011000, the run lengths are 1 (digit 1), 1 (digit 0), 1 (digit 1), 3 (digit 0), 2 (digit 1), 3 (digit 0). Reporting just the lengths of each run gives 1, 1, 1, 3, 2, 3, thereby producing a widths value of 111323.
The barcode scheme does not contain a check digit (in contrast to—for instance—Code 128), but it can be considered self-checking on the grounds that a single erroneously interpreted bar cannot generate another valid character. Possibly the most serious drawback of Code 39 is its low data density: It requires more space to encode data in ...
The check digit is an additional digit, used to verify that a barcode has been scanned correctly. It is computed modulo 10, where the weights in the checksum calculation alternate 3 and 1. In particular, since the weights are relatively prime to 10, the EAN-13 system will detect all single digit errors.