enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Algebra of sets - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_sets

    The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".

  3. Order of operations - Wikipedia

    en.wikipedia.org/wiki/Order_of_operations

    While the first interpretation may be expected by some users due to the nature of implied multiplication, [38] the latter is more in line with the rule that multiplication and division are of equal precedence. [3] When the user is unsure how a calculator will interpret an expression, parentheses can be used to remove the ambiguity. [3]

  4. Ordinal arithmetic - Wikipedia

    en.wikipedia.org/wiki/Ordinal_arithmetic

    In the mathematical field of set theory, ordinal arithmetic describes the three usual operations on ordinal numbers: addition, multiplication, and exponentiation.Each can be defined in essentially two different ways: either by constructing an explicit well-ordered set that represents the result of the operation or by using transfinite recursion.

  5. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    To investigate the left distributivity of set subtraction over unions or intersections, consider how the sets involved in (both of) De Morgan's laws are all related: () = = () always holds (the equalities on the left and right are De Morgan's laws) but equality is not guaranteed in general (that is, the containment might be strict).

  6. Cartesian product - Wikipedia

    en.wikipedia.org/wiki/Cartesian_product

    An important special case is when the index set is , the natural numbers: this Cartesian product is the set of all infinite sequences with the i-th term in its corresponding set X i. For example, each element of ∏ n = 1 ∞ R = R × R × ⋯ {\displaystyle \prod _{n=1}^{\infty }\mathbb {R} =\mathbb {R} \times \mathbb {R} \times \cdots } can ...

  7. Least common multiple - Wikipedia

    en.wikipedia.org/wiki/Least_common_multiple

    For example, 10 is a multiple of 5 because 5 × 2 = 10, so 10 is divisible by 5 and 2. Because 10 is the smallest positive integer that is divisible by both 5 and 2, it is the least common multiple of 5 and 2. By the same principle, 10 is the least common multiple of −5 and −2 as well.

  8. Elementary arithmetic - Wikipedia

    en.wikipedia.org/wiki/Elementary_arithmetic

    Elementary arithmetic is a branch of mathematics involving addition, subtraction, multiplication, and division. Due to its low level of abstraction , broad range of application, and position as the foundation of all mathematics, elementary arithmetic is generally the first branch of mathematics taught in schools.

  9. Dedekind cut - Wikipedia

    en.wikipedia.org/wiki/Dedekind_cut

    If the ordered set S is complete, then, for every Dedekind cut (A, B) of S, the set B must have a minimal element b, hence we must have that A is the interval (−∞, b), and B the interval [b, +∞). In this case, we say that b is represented by the cut (A, B). The important purpose of the Dedekind cut is to work with number sets that are not ...