enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Viscoelasticity - Wikipedia

    en.wikipedia.org/wiki/Viscoelasticity

    Many viscoelastic materials exhibit rubber like behavior explained by the thermodynamic theory of polymer elasticity. Some examples of viscoelastic materials are amorphous polymers, semicrystalline polymers, biopolymers, metals at very high temperatures, and bitumen materials.

  3. Maxwell material - Wikipedia

    en.wikipedia.org/wiki/Maxwell_material

    A Maxwell material is the most simple model viscoelastic material showing properties of a typical liquid. It shows viscous flow on the long timescale, but additional elastic resistance to fast deformations. [1] It is named for James Clerk Maxwell who proposed the model in 1867.

  4. Kelvin–Voigt material - Wikipedia

    en.wikipedia.org/wiki/Kelvin–Voigt_material

    A Kelvin–Voigt material, also called a Voigt material, is the most simple model viscoelastic material showing typical rubbery properties. It is purely elastic on long timescales (slow deformation), but shows additional resistance to fast deformation.

  5. Elastomer - Wikipedia

    en.wikipedia.org/wiki/Elastomer

    An elastomer is a polymer with viscoelasticity (i.e. both viscosity and elasticity) and with weak intermolecular forces, generally low Young's modulus (E) and high failure strain compared with other materials. [1]

  6. Mechanical properties of biomaterials - Wikipedia

    en.wikipedia.org/wiki/Mechanical_properties_of...

    Viscoelasticity, a material property characterized by the extrusion of dual solid and liquid-like behaviors, is typically found in an array of polymer-based biomaterials, including those used in biomedical devices as well as in clinical settings. From polymer-based surface coatings on drug-eluting stents to entangled tissue networks that have ...

  7. Generalized Maxwell model - Wikipedia

    en.wikipedia.org/wiki/Generalized_Maxwell_model

    The generalized Maxwell model also known as the Maxwell–Wiechert model (after James Clerk Maxwell and E Wiechert [1] [2]) is the most general form of the linear model for viscoelasticity. In this model, several Maxwell elements are assembled in parallel. It takes into account that the relaxation does not occur at a single time, but in a set ...

  8. Standard linear solid model - Wikipedia

    en.wikipedia.org/wiki/Standard_Linear_Solid_model

    where σ is the applied stress, E is the Young's modulus of the material, and ε is the strain. The spring represents the elastic component of the model's response. [2] Dashpots represent the viscous component of a viscoelastic material. In these elements, the applied stress varies with the time rate of change of the strain:

  9. Dynamic modulus - Wikipedia

    en.wikipedia.org/wiki/Dynamic_modulus

    Viscoelasticity is studied using dynamic mechanical analysis where an oscillatory force (stress) is applied to a material and the resulting displacement (strain) is measured. [2] In purely elastic materials the stress and strain occur in phase, so that the response of one occurs simultaneously with the other.