Search results
Results from the WOW.Com Content Network
The second law of thermodynamics is a physical law based on universal empirical observation concerning heat and energy interconversions. A simple statement of the law is that heat always flows spontaneously from hotter to colder regions of matter (or 'downhill' in terms of the temperature gradient).
Traditionally, thermodynamics has recognized three fundamental laws, simply named by an ordinal identification, the first law, the second law, and the third law. [1] [2] [3] A more fundamental statement was later labelled as the zeroth law after the first three laws had been established.
Euler's second law states that the rate of change of angular momentum L about a point that is fixed in an inertial reference frame (often the center of mass of the body), is equal to the sum of the external moments of force acting on that body M about that point: [1] [4] [5]
The arrow of time is the "one-way direction" or "asymmetry" of time. The thermodynamic arrow of time is provided by the second law of thermodynamics, which says that in an isolated system, entropy tends to increase with time. Entropy can be thought of as a measure of microscopic disorder; thus the second law implies that time is asymmetrical ...
Centrifugal force is one of several so-called pseudo-forces (also known as inertial forces), so named because, unlike real forces, they do not originate in interactions with other bodies situated in the environment of the particle upon which they act. Instead, centrifugal force originates in the rotation of the frame of reference within which ...
The structure of Maxwell relations is a statement of equality among the second derivatives for continuous functions. It follows directly from the fact that the order of differentiation of an analytic function of two variables is irrelevant (Schwarz theorem).
John Earman and John D. Norton have argued that Szilárd and Landauer's explanations of Maxwell's demon begin by assuming that the second law of thermodynamics cannot be violated by the demon, and derive further properties of the demon from this assumption, including the necessity of consuming energy when erasing information, etc. [15] [16] It ...
One application of higher-order derivatives is in physics. Suppose that a function represents the position of an object at the time. The first derivative of that function is the velocity of an object with respect to time, the second derivative of the function is the acceleration of an object with respect to time, [29] and the third derivative ...