Search results
Results from the WOW.Com Content Network
The momentum equation in the direction of gravity should be modeled for buoyant forces resulting from buoyancy. [1] Hence the momentum equation is given by ∂ρv/∂t + V.∇(ρv)= -g((ρ-ρ°) - ∇P+μ∇ 2 v + S v. In the above equation -g((ρ-ρ°) is the buoyancy term, where ρ° is the reference density.
Submerged specific gravity is a dimensionless measure of an object's buoyancy when immersed in a fluid.It can be expressed in terms of the equation = where stands for "submerged specific gravity", is the density of the object, and is the density of the fluid.
(This formula is used for example in describing the measuring principle of a dasymeter and of hydrostatic weighing.) Example: If you drop wood into water, buoyancy will keep it afloat. Example: A helium balloon in a moving car. When increasing speed or driving in a curve, the air moves in the opposite direction to the car's acceleration.
[2]: 128–129 The Boussinesq approximation states that the density variation is only important in the buoyancy term. If F = ρ g {\displaystyle F=\rho \mathbf {g} } is the gravitational body force, the resulting conservation equation is [ 2 ] : 129
In fluid mechanics, the Rayleigh number (Ra, after Lord Rayleigh [1]) for a fluid is a dimensionless number associated with buoyancy-driven flow, also known as free (or natural) convection. [2] [3] [4] It characterises the fluid's flow regime: [5] a value in a certain lower range denotes laminar flow; a value in a higher range, turbulent flow.
Buoyancy (/ ˈ b ɔɪ ən s i, ˈ b uː j ən s i /), [1] [2] or upthrust is a net upward force exerted by a fluid that opposes the weight of a partially or fully immersed object. In a column of fluid, pressure increases with depth as a result of the weight of the overlying fluid.
Neutral buoyancy occurs when an object's average density is equal to the density of the fluid in which it is immersed, resulting in the buoyant force balancing the force of gravity that would otherwise cause the object to sink (if the body's density is greater than the density of the fluid in which it is immersed) or rise (if it is less). An ...
The Perry–Robertson formula is a mathematical formula which is able to produce a good approximation of buckling loads in long slender columns or struts, and is the basis for the buckling formulation adopted in EN 1993. The formula in question can be expressed in the following form: