Search results
Results from the WOW.Com Content Network
3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]
Such functions can be called functions of a quaternion variable just as functions of a real variable or a complex variable are called. As with complex and real analysis , it is possible to study the concepts of analyticity , holomorphy , harmonicity and conformality in the context of quaternions.
Spatial rotations in three dimensions can be parametrized using both Euler angles and unit quaternions.This article explains how to convert between the two representations. Actually this simple use of "quaternions" was first presented by Euler some seventy years earlier than Hamilton to solve the problem of magic squar
A common example involves the quaternionic representation of rotations in three dimensions. Each (proper) rotation is represented by a quaternion with unit norm.There is an obvious one-dimensional quaternionic vector space, namely the space H of quaternions themselves under left multiplication.
The real quaternion 1 is the identity element. The real quaternions commute with all other quaternions, that is aq = qa for every quaternion q and every real quaternion a. In algebraic terminology this is to say that the field of real quaternions are the center of this quaternion algebra.
A rotor is an object in the geometric algebra (also called Clifford algebra) of a vector space that represents a rotation about the origin. [1] The term originated with William Kingdon Clifford, [2] in showing that the quaternion algebra is just a special case of Hermann Grassmann's "theory of extension" (Ausdehnungslehre). [3]
The connection between quaternions and rotations, commonly exploited in computer graphics, is explained in quaternions and spatial rotations. The map from S 3 onto SO(3) that identifies antipodal points of S 3 is a surjective homomorphism of Lie groups, with kernel {±1}. Topologically, this map is a two-to-one covering map. (See the plate trick.)
Rotation formalisms are focused on proper (orientation-preserving) motions of the Euclidean space with one fixed point, that a rotation refers to.Although physical motions with a fixed point are an important case (such as ones described in the center-of-mass frame, or motions of a joint), this approach creates a knowledge about all motions.