Search results
Results from the WOW.Com Content Network
Its inverse, the type-III DCT, is correspondingly often called simply the inverse DCT or the IDCT. Two related transforms are the discrete sine transform (DST), which is equivalent to a DFT of real and odd functions, and the modified discrete cosine transform (MDCT), which is based on a DCT of overlapping data. Multidimensional DCTs (MD DCTs ...
Two-dimensional DCT frequencies from the JPEG DCT. The DCT is used in JPEG image compression, MJPEG, MPEG, DV, Daala, and Theora video compression. There, the two-dimensional DCT-II of NxN blocks are computed and the results are quantized and entropy coded. In this case, N is typically 8 and the DCT-II formula is applied to each row and column ...
In addition to spectral analysis of signals, discrete transforms play important role in data compression, signal detection, digital filtering and correlation analysis. [2] The discrete cosine transform (DCT) is the most widely used transform coding compression algorithm in digital media, followed by the discrete wavelet transform (DWT).
A useful property of the DFT is that the inverse DFT can be easily expressed in terms of the (forward) DFT, via several well-known "tricks". (For example, in computations, it is often convenient to only implement a fast Fourier transform corresponding to one transform direction and then to get the other transform direction from the first.)
In mathematics the finite Fourier transform may refer to either . another name for discrete-time Fourier transform (DTFT) of a finite-length series. E.g., F.J.Harris (pp. 52–53) describes the finite Fourier transform as a "continuous periodic function" and the discrete Fourier transform (DFT) as "a set of samples of the finite Fourier transform".
The inverse DTFT reconstructs the original sampled data sequence, while the inverse DFT produces a periodic summation of the original sequence. The Fast Fourier Transform (FFT) is an algorithm for computing one cycle of the DFT, and its inverse produces one cycle of the inverse DFT.
In applied mathematics, a DFT matrix is an expression of a discrete Fourier transform (DFT) as a transformation matrix, which can be applied to a signal through matrix multiplication. Definition [ edit ]
In mathematics, the discrete sine transform (DST) is a Fourier-related transform similar to the discrete Fourier transform (DFT), but using a purely real matrix.It is equivalent to the imaginary parts of a DFT of roughly twice the length, operating on real data with odd symmetry (since the Fourier transform of a real and odd function is imaginary and odd), where in some variants the input and ...