Search results
Results from the WOW.Com Content Network
In many cases, such a matrix R can be obtained by an explicit formula. Square roots that are not the all-zeros matrix come in pairs: if R is a square root of M, then −R is also a square root of M, since (−R)(−R) = (−1)(−1)(RR) = R 2 = M. A 2×2 matrix with two distinct nonzero eigenvalues has four square roots.
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.
which can be used to represent the imaginary unit and hence all complex numbers using 2×2 real matrices, see matrix representation of complex numbers. Just as with the real numbers, a real matrix may fail to have a real square root, but have a square root with complex-valued entries. Some matrices have no square root.
A complex number is an expression of the form a + bi, where a and b are real numbers, and i is an abstract symbol, the so-called imaginary unit, whose meaning will be explained further below. For example, 2 + 3i is a complex number. [3]
For example, if A is a 3-by-0 matrix and B is a 0-by-3 matrix, then AB is the 3-by-3 zero matrix corresponding to the null map from a 3-dimensional space V to itself, while BA is a 0-by-0 matrix. There is no common notation for empty matrices, but most computer algebra systems allow creating and computing with them.
Let X and Y be n×n complex matrices and let a and b be arbitrary complex numbers. We denote the n×n identity matrix by I and the zero matrix by 0. The matrix exponential satisfies the following properties. [2] We begin with the properties that are immediate consequences of the definition as a power series: e 0 = I
A square matrix with entries in a field is singular if and only if its determinant is zero. Singular matrices are rare in the sense that if a square matrix's entries are randomly selected from any bounded region on the number line or complex plane, the probability that the matrix is singular is 0, that is, it will "almost never" be singular.
Given a zero-dimensional polynomial system over the rational numbers, the RUR has the following properties. All but a finite number linear combinations of the variables are separating variables. When the separating variable is chosen, the RUR exists and is unique. In particular h and the g i are defined independently of any algorithm to compute ...