Search results
Results from the WOW.Com Content Network
In algebraic topology, the intersection number appears as the Poincaré dual of the cup product. Specifically, if two manifolds, X and Y , intersect transversely in a manifold M , the homology class of the intersection is the Poincaré dual of the cup product D M X ⌣ D M Y {\displaystyle D_{M}X\smile D_{M}Y} of the Poincaré duals of X and Y .
The + and invariants keep track of how curves change under these transformations and deformations. The + invariant increases by 2 when a direct self-tangency move creates new self-intersection points (and decreases by 2 when such points are eliminated), while decreases by 2 when an inverse self-tangency move creates new intersections (and increases by 2 when they are eliminated).
In mathematics, intersection theory is one of the main branches of algebraic geometry, where it gives information about the intersection of two subvarieties of a given variety. [1] The theory for varieties is older, with roots in Bézout's theorem on curves and elimination theory .
where is the dimension of the intersection (∩) of the interior (I), boundary (B), and exterior (E) of geometries a and b.. The terms interior and boundary in this article are used in the sense used in algebraic topology and manifold theory, not in the sense used in general topology: for example, the interior of a line segment is the line segment without its endpoints, and its ...
In 4-dimensional topology, a branch of mathematics, Rokhlin's theorem states that if a smooth, orientable, closed 4-manifold M has a spin structure (or, equivalently, the second Stiefel–Whitney class vanishes), then the signature of its intersection form, a quadratic form on the second cohomology group (), is divisible by 16.
A simple corollary of the theorem is that the Cantor set is nonempty, since it is defined as the intersection of a decreasing nested sequence of sets, each of which is defined as the union of a finite number of closed intervals; hence each of these sets is non-empty, closed, and bounded. In fact, the Cantor set contains uncountably many points.
In mathematics, and especially differential topology and gauge theory, Donaldson's theorem states that a definite intersection form of a compact, oriented, smooth manifold of dimension 4 is diagonalizable. If the intersection form is positive (negative) definite, it can be diagonalized to the identity matrix (negative identity matrix) over the ...
Let be a set and a nonempty family of subsets of ; that is, is a nonempty subset of the power set of . Then is said to have the finite intersection property if every nonempty finite subfamily has nonempty intersection; it is said to have the strong finite intersection property if that intersection is always infinite.