Search results
Results from the WOW.Com Content Network
The Riemann zeta function ζ(z) plotted with domain coloring. [1] The pole at = and two zeros on the critical line.. The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (), is a mathematical function of a complex variable defined as () = = = + + + for >, and its analytic continuation elsewhere.
The zeta function values listed below include function values at the negative even numbers (s = −2, −4, etc.), for which ζ(s) = 0 and which make up the so-called trivial zeros. The Riemann zeta function article includes a colour plot illustrating how the function varies over a continuous rectangular region of the complex plane.
These are called its trivial zeros. The zeta function is also zero for other values of s, which are called nontrivial zeros. The Riemann hypothesis is concerned with the locations of these nontrivial zeros, and states that: The real part of every nontrivial zero of the Riemann zeta function is 1 / 2 .
In mathematics, the Z function is a function used for studying the Riemann zeta function along the critical line where the argument is one-half. It is also called the Riemann–Siegel Z function, the Riemann–Siegel zeta function, the Hardy function, the Hardy Z function and the Hardy zeta function .
The zeros of the eta function include all the zeros of the zeta function: the negative even integers (real equidistant simple zeros); the zeros along the critical line, none of which are known to be multiple and over 40% of which have been proven to be simple, and the hypothetical zeros in the critical strip but not on the critical line, which if they do exist must occur at the vertices of ...
Duursma zeta function of error-correcting codes; Epstein zeta function of a quadratic form; Goss zeta function of a function field; Hasse–Weil zeta function of a variety; Height zeta function of a variety; Hurwitz zeta function, a generalization of the Riemann zeta function; Igusa zeta function; Ihara zeta function of a graph; L-function, a ...
A meromorphic function may have infinitely many zeros and poles. This is the case for the gamma function (see the image in the infobox), which is meromorphic in the whole complex plane, and has a simple pole at every non-positive integer. The Riemann zeta function is also meromorphic in the whole complex plane, with a single pole of order 1 at ...
In mathematics, the Riemann–von Mangoldt formula, named for Bernhard Riemann and Hans Carl Friedrich von Mangoldt, describes the distribution of the zeros of the Riemann zeta function. The formula states that the number N(T) of zeros of the zeta function with imaginary part greater than 0 and less than or equal to T satisfies