Search results
Results from the WOW.Com Content Network
The subspace V × {0} of V ⊕ W is isomorphic to V and is often identified with V; similarly for {0} × W and W. (See internal direct sum below.) With this identification, every element of V ⊕ W can be written in one and only one way as the sum of an element of V and an element of W. The dimension of V ⊕ W is equal to the sum of the ...
The direct sum is also commutative up to isomorphism, i.e. for any algebraic structures and of the same kind. The direct sum of finitely many abelian groups, vector spaces, or modules is canonically isomorphic to the corresponding direct product. This is false, however, for some algebraic objects, like nonabelian groups.
In the branch of mathematics called functional analysis, a complemented subspace of a topological vector space, is a vector subspace for which there exists some other vector subspace of , called its (topological) complement in , such that is the direct sum in the category of topological vector spaces.
The set of complex numbers C, numbers that can be written in the form x + iy for real numbers x and y where i is the imaginary unit, form a vector space over the reals with the usual addition and multiplication: (x + iy) + (a + ib) = (x + a) + i(y + b) and c ⋅ (x + iy) = (c ⋅ x) + i(c ⋅ y) for real numbers x, y, a, b and c. The various ...
The group operation in the external direct sum is pointwise multiplication, as in the usual direct product. This subset does indeed form a group, and for a finite set of groups {H i} the external direct sum is equal to the direct product. If G = ΣH i, then G is isomorphic to Σ E {H i}. Thus, in a sense, the direct sum is an "internal ...
In general topology and related areas of mathematics, the disjoint union (also called the direct sum, free union, free sum, topological sum, or coproduct) of a family of topological spaces is a space formed by equipping the disjoint union of the underlying sets with a natural topology called the disjoint union topology. Roughly speaking, in the ...
The tensor product of two vector spaces is a vector space that is defined up to an isomorphism.There are several equivalent ways to define it. Most consist of defining explicitly a vector space that is called a tensor product, and, generally, the equivalence proof results almost immediately from the basic properties of the vector spaces that are so defined.
A short exact sequence of abelian groups or of modules over a fixed ring, or more generally of objects in an abelian category. is called split exact if it is isomorphic to the exact sequence where the middle term is the direct sum of the outer ones: