Search results
Results from the WOW.Com Content Network
Earthquake-resistant or aseismic structures are designed to protect buildings to some or greater extent from earthquakes. While no structure can be entirely impervious to earthquake damage, the goal of earthquake engineering is to erect structures that fare better during seismic activity than their conventional counterparts.
EN 1998-5 establishes the requirements, criteria, and rules for the siting and foundation soil of structures for earthquake resistance. It covers the design of different foundation systems, the design of earth retaining structures and soil-structure interaction under seismic actions.
Earthquake engineering is an interdisciplinary branch of engineering that designs and analyzes structures, such as buildings and bridges, with earthquakes in mind. Its overall goal is to make such structures more resistant to earthquakes.
Seismic retrofitting is the modification of existing structures to make them more resistant to seismic activity, ground motion, or soil failure due to earthquakes.With better understanding of seismic demand on structures and with recent experiences with large earthquakes near urban centers, the need of seismic retrofitting is well acknowledged.
Seismic base isolation, also known as base isolation, [3] or base isolation system, [4] is one of the most popular means of protecting a structure against earthquake forces. [5] It is a collection of structural elements which should substantially decouple a superstructure from its substructure that is in turn resting on the shaking ground, thus ...
In January 1928, the first edition of the Uniform Building Code (UBC) was published, and included an appendix with non-mandatory matter with §2311 recommending a minimum lateral design force for earthquake resistance of V = 0.075W for buildings on foundations with allowable bearing pressures of 4,000 psf or more, and 0.10 W for all other ...
The main objectives of earthquake engineering are to understand the interaction of structures with the shaking ground, foresee the consequences of possible earthquakes, and design and construct the structures to perform during an earthquake. Earthquake-proof structures are not necessarily extremely strong like the El Castillo pyramid at Chichen ...
Seismic analysis is a subset of structural analysis and is the calculation of the response of a building (or nonbuilding) structure to earthquakes. It is part of the process of structural design, earthquake engineering or structural assessment and retrofit (see structural engineering) in regions where earthquakes are prevalent.