Search results
Results from the WOW.Com Content Network
Conversely, if it has more protons than electrons, it has a positive charge, and is called a positive ion (or cation). The electrons of an atom are attracted to the protons in an atomic nucleus by the electromagnetic force. The protons and neutrons in the nucleus are attracted to each other by the nuclear force. This force is usually stronger ...
For example, a neutral chlorine atom has 17 protons and 17 electrons, whereas a Cl − anion has 17 protons and 18 electrons for a total charge of −1. All atoms of a given element are not necessarily identical, however. The number of neutrons may vary to form different isotopes, and energy levels may differ, resulting in different nuclear ...
Protons define the entire charge of a nucleus, and hence its chemical identity. Neutrons are electrically neutral, but contribute to the mass of a nucleus to nearly the same extent as the protons. Neutrons can explain the phenomenon of isotopes (same atomic number with different atomic mass). The main role of neutrons is to reduce electrostatic ...
The neutrons and protons in a nucleus form a quantum mechanical system according to the nuclear shell model. Protons and neutrons of a nuclide are organized into discrete hierarchical energy levels with unique quantum numbers. Nucleon decay within a nucleus can occur if allowed by basic energy conservation and quantum mechanical constraints.
Heisenberg's landmark papers approached the description of protons and neutrons in the nucleus through quantum mechanics. While Heisenberg's theory for protons and neutrons in the nucleus was a "major step toward understanding the nucleus as a quantum mechanical system", [69] he still assumed the presence of nuclear electrons. In particular ...
The liquid drop model is one of the first models of nuclear structure, proposed by Carl Friedrich von Weizsäcker in 1935. [5] It describes the nucleus as a semiclassical fluid made up of neutrons and protons, with an internal repulsive electrostatic force proportional to the number of protons.
The atomic nucleus is a bound system of protons and neutrons. The spatial extent and shape of the nucleus depend not only on the size and shape of discrete nucleons, but also on the distance between them (the inter-nucleon distance). (Other factors include spin, alignment, orbital motion, and the local nuclear environment (see EMC effect).)
When there is an excess of electrons, the object is said to be negatively charged. When there are fewer electrons than the number of protons in nuclei, the object is said to be positively charged. When the number of electrons and the number of protons are equal, their charges cancel each other and the object is said to be electrically neutral.