Search results
Results from the WOW.Com Content Network
Also, the chloride-bicarbonate exchanger biological transport protein relies on the chloride ion to increase the blood's capacity of carbon dioxide, in the form of the bicarbonate ion; this is the mechanism underpinning the chloride shift occurring as the blood passes through oxygen-consuming capillary beds.
Chlorine dioxide is also superior to chlorine when operating above pH 7, [17]: 4–33 in the presence of ammonia and amines, [28] and for the control of biofilms in water distribution systems. [25] Chlorine dioxide is used in many industrial water treatment applications as a biocide, including cooling towers, process water, and food processing ...
Chloride shift (also known as the Hamburger phenomenon or lineas phenomenon, named after Hartog Jakob Hamburger) is a process which occurs in a cardiovascular system and refers to the exchange of bicarbonate (HCO 3 −) and chloride (Cl −) across the membrane of red blood cells (RBCs).
[5] [21] A rise in the P CO 2 in the arterial blood plasma above 5.3 kPa (40 mmHg) reflexly causes an increase in the rate and depth of breathing. Normal breathing is resumed when the partial pressure of carbon dioxide has returned to 5.3 kPa. [8] The converse happens if the partial pressure of carbon dioxide falls below the normal range.
Chloride is part of gastric acid (HCl), which plays a role in absorption of electrolytes, activating enzymes, and killing bacteria. The levels of chloride in the blood can help determine if there are underlying metabolic disorders. [20] Generally, chloride has an inverse relationship with bicarbonate, an electrolyte that indicates acid-base ...
Recall that the relationship represented in a Davenport diagram is a relationship between three variables: P CO 2, bicarbonate concentration and pH.Thus, Fig. 7 can be thought of as a topographical map—that is, a two-dimensional representation of a three-dimensional surface—where each isopleth indicates a different partial pressure or “altitude.”
An arterial blood gas (ABG) test, or arterial blood gas analysis (ABGA) measures the amounts of arterial gases, such as oxygen and carbon dioxide. An ABG test requires that a small volume of blood be drawn from the radial artery with a syringe and a thin needle , [ 1 ] but sometimes the femoral artery in the groin or another site is used.
Reference ranges (reference intervals) for blood tests are sets of values used by a health professional to interpret a set of medical test results from blood samples. Reference ranges for blood tests are studied within the field of clinical chemistry (also known as "clinical biochemistry", "chemical pathology" or "pure blood chemistry"), the ...