Search results
Results from the WOW.Com Content Network
The mathematical notation for using the common logarithm is log(x), [4] log 10 (x), [5] or sometimes Log(x) with a capital L; [a] on calculators, it is printed as "log", but mathematicians usually mean natural logarithm (logarithm with base e ≈ 2.71828) rather than common logarithm when writing "log".
Nicolas Chuquet used a form of exponential notation in the 15th century, for example 12 2 to represent 12x 2. [11] This was later used by Henricus Grammateus and Michael Stifel in the 16th century. In the late 16th century, Jost Bürgi would use Roman numerals for exponents in a way similar to that of Chuquet, for example iii 4 for 4 x 3 .
The first Soviet scientific pocket-sized calculator the "B3-18" was completed by the end of 1975. In 1973, Texas Instruments (TI) introduced the SR-10, (SR signifying slide rule) an algebraic entry pocket calculator using scientific notation for $150. Shortly after the SR-11 featured an added key for entering pi (π).
Big O notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by German mathematicians Paul Bachmann, [1] Edmund Landau, [2] and others, collectively called Bachmann–Landau notation or asymptotic notation.
Introduction of various invariants of torsion-free abelian groups has been one avenue of further progress. See the books by Irving Kaplansky, László Fuchs, Phillip Griffith, and David Arnold, as well as the proceedings of the conferences on Abelian Group Theory published in Lecture Notes in Mathematics for more recent findings.
For example, the Agoh–Giuga conjecture postulates that p is a prime number if and only if pB p − 1 is congruent to −1 modulo p. Divisibility properties of the Bernoulli numbers are related to the ideal class groups of cyclotomic fields by a theorem of Kummer and its strengthening in the Herbrand-Ribet theorem , and to class numbers of ...
An example depicting the power of quantum computing is Grover's algorithm for searching unstructured databases. The algorithm's quantum query complexity is O ( N ) {\textstyle O{\left({\sqrt {N}}\right)}} , a quadratic improvement over the best possible classical query complexity O ( N ) {\displaystyle O(N)} , which is a linear search .