enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Radius of curvature - Wikipedia

    en.wikipedia.org/wiki/Radius_of_curvature

    Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or ...

  3. Curvature - Wikipedia

    en.wikipedia.org/wiki/Curvature

    The curvature is the reciprocal of radius of curvature. That is, the curvature is =, where R is the radius of curvature [5] (the whole circle has this curvature, it can be read as turn 2π over the length 2π R). This definition is difficult to manipulate and to express in formulas.

  4. Osculating circle - Wikipedia

    en.wikipedia.org/wiki/Osculating_circle

    The center and radius of the osculating circle at a given point are called center of curvature and radius of curvature of the curve at that point. A geometric construction was described by Isaac Newton in his Principia:

  5. Curve radius - Wikipedia

    en.wikipedia.org/wiki/Curve_radius

    Radius of curvature, the reciprocal of the curvature in differential geometry Minimum railway curve radius , the shortest allowable design radius for the centerline of railway tracks Topics referred to by the same term

  6. Degree of curvature - Wikipedia

    en.wikipedia.org/wiki/Degree_of_curvature

    Where degree of curvature is based on 100 units of arc length, the conversion between degree of curvature and radius is Dr = 18000/π ≈ 5729.57795, where D is degree and r is radius. Since rail routes have very large radii, they are laid out in chords, as the difference to the arc is inconsequential; this made work easier before electronic ...

  7. Euler spiral - Wikipedia

    en.wikipedia.org/wiki/Euler_spiral

    Animation depicting evolution of a Cornu spiral with the tangential circle with the same radius of curvature as at its tip, also known as an osculating circle.. To travel along a circular path, an object needs to be subject to a centripetal acceleration (for example: the Moon circles around the Earth because of gravity; a car turns its front wheels inward to generate a centripetal force).

  8. Theorema Egregium - Wikipedia

    en.wikipedia.org/wiki/Theorema_egregium

    A sphere of radius R has constant Gaussian curvature which is equal to 1/R 2. At the same time, a plane has zero Gaussian curvature. At the same time, a plane has zero Gaussian curvature. As a corollary of Theorema Egregium, a piece of paper cannot be bent onto a sphere without crumpling.

  9. Menger curvature - Wikipedia

    en.wikipedia.org/wiki/Menger_curvature

    In mathematics, the Menger curvature of a triple of points in n-dimensional Euclidean space R n is the reciprocal of the radius of the circle that passes through the three points. It is named after the Austrian - American mathematician Karl Menger .