Search results
Results from the WOW.Com Content Network
In elementary algebra, root rationalisation (or rationalization) is a process by which radicals in the denominator of an algebraic fraction are eliminated.. If the denominator is a monomial in some radical, say , with k < n, rationalisation consists of multiplying the numerator and the denominator by , and replacing by x (this is allowed, as, by definition, a n th root of x is a number that ...
In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be rational numbers ; they may be taken in any field K .
A rational number has an indefinitely repeating sequence of finite length l, if the reduced fraction's denominator contains a prime factor that is not a factor of the base. If q is the maximal factor of the reduced denominator which is coprime to the base, l is the smallest exponent such that q divides b ℓ − 1.
Rationalisation (mathematics), the process of removing a square root or imaginary number from the denominator of a fraction; Rationalization (psychology), a psychological defense mechanism in which perceived controversial behaviors are logically justified also known as "making excuses"
The numerator and denominator are called the terms of the algebraic fraction. A complex fraction is a fraction whose numerator or denominator, or both, contains a fraction. A simple fraction contains no fraction either in its numerator or its denominator. A fraction is in lowest terms if the only factor common to the numerator and the ...
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator p and a non-zero denominator q. [1] For example, is a rational number, as is every integer (for example, =).
This rational will be best in the sense that no other rational in (x, y) will have a smaller numerator or a smaller denominator. [13] [14] If x is rational, it will have two continued fraction representations that are finite, x 1 and x 2, and similarly a rational y will have two representations, y 1 and y 2.