enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rigid body dynamics - Wikipedia

    en.wikipedia.org/wiki/Rigid_body_dynamics

    In the physical science of dynamics, rigid-body dynamics studies the movement of systems of interconnected bodies under the action of external forces.The assumption that the bodies are rigid (i.e. they do not deform under the action of applied forces) simplifies analysis, by reducing the parameters that describe the configuration of the system to the translation and rotation of reference ...

  3. List of equations - Wikipedia

    en.wikipedia.org/wiki/List_of_equations

    1.4 Biology. 1.5 Economics. ... Euler equations (fluid dynamics) Euler's equations (rigid body dynamics) ... Class equation; Comparametric equation;

  4. Hamilton's principle - Wikipedia

    en.wikipedia.org/wiki/Hamilton's_principle

    Hamilton's principle states that the true evolution q(t) of a system described by N generalized coordinates q = (q 1, q 2, ..., q N) between two specified states q 1 = q(t 1) and q 2 = q(t 2) at two specified times t 1 and t 2 is a stationary point (a point where the variation is zero) of the action functional [] = ((), ˙ (),) where (, ˙,) is the Lagrangian function for the system.

  5. Newton–Euler equations - Wikipedia

    en.wikipedia.org/wiki/Newton–Euler_equations

    Traditionally the Newton–Euler equations is the grouping together of Euler's two laws of motion for a rigid body into a single equation with 6 components, using column vectors and matrices. These laws relate the motion of the center of gravity of a rigid body with the sum of forces and torques (or synonymously moments) acting on the rigid body.

  6. Screw theory - Wikipedia

    en.wikipedia.org/wiki/Screw_theory

    In order to define the twist of a rigid body, we must consider its movement defined by the parameterized set of spatial displacements, D(t) = ([A(t)], d(t)), where [A] is a rotation matrix and d is a translation vector. This causes a point p that is fixed in moving body coordinates to trace a curve P(t) in the fixed frame given by

  7. Elasticity (physics) - Wikipedia

    en.wikipedia.org/wiki/Elasticity_(physics)

    In physics and materials science, elasticity is the ability of a body to resist a distorting influence and to return to its original size and shape when that influence or force is removed. Solid objects will deform when adequate loads are applied to them; if the material is elastic, the object will return to its initial shape and size after ...

  8. Painlevé paradox - Wikipedia

    en.wikipedia.org/wiki/Painlevé_paradox

    In rigid-body dynamics, the Painlevé paradox (also called frictional paroxysms by Jean Jacques Moreau) is the paradox that results from inconsistencies between the contact and Coulomb models of friction. [1] It is named for former French prime minister and mathematician Paul Painlevé.

  9. Multibody system - Wikipedia

    en.wikipedia.org/wiki/Multibody_system

    A body is usually considered to be a rigid or flexible part of a mechanical system (not to be confused with the human body). An example of a body is the arm of a robot, a wheel or axle in a car or the human forearm. A link is the connection of two or more bodies, or a body with the ground.