Search results
Results from the WOW.Com Content Network
Using these techniques, Malthus' population principle of growth was later transformed into a mathematical model known as the logistic equation: = (), where N is the population size, r is the intrinsic rate of natural increase, and K is the carrying capacity of the population. The formula can be read as follows: the rate of change in the ...
In the study of age-structured population growth, probably one of the most important equations is the Euler–Lotka equation.Based on the age demographic of females in the population and female births (since in many cases it is the females that are more limited in the ability to reproduce), this equation allows for an estimation of how a population is growing.
The standard logistic function is the logistic function with parameters =, =, =, which yields = + = + = / / + /.In practice, due to the nature of the exponential function, it is often sufficient to compute the standard logistic function for over a small range of real numbers, such as a range contained in [−6, +6], as it quickly converges very close to its saturation values of 0 and 1.
P 0 = P(0) is the initial population size, r = the population growth rate, which Ronald Fisher called the Malthusian parameter of population growth in The Genetical Theory of Natural Selection, [2] and Alfred J. Lotka called the intrinsic rate of increase, [3] [4] t = time. The model can also be written in the form of a differential equation:
One of the most basic and milestone models of population growth was the logistic model of population growth formulated by Pierre François Verhulst in 1838. The logistic model takes the shape of a sigmoid curve and describes the growth of a population as exponential, followed by a decrease in growth, and bound by a carrying capacity due to ...
The Gompertz curve or Gompertz function is a type of mathematical model for a time series, named after Benjamin Gompertz (1779–1865). It is a sigmoid function which describes growth as being slowest at the start and end of a given time period.
Originally developed for growth modelling, it allows for more flexible S-shaped curves. The function is sometimes named Richards's curve after F. J. Richards , who proposed the general form for the family of models in 1959.
The UN Population Division report of 2022 projects world population to continue growing after 2050, although at a steadily decreasing rate, to peak at 10.4 billion in 2086, and then to start a slow decline to about 10.3 billion in 2100 with a growth rate at that time of -0.1%.