enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Work (physics) - Wikipedia

    en.wikipedia.org/wiki/Work_(physics)

    The ancient Greek understanding of physics was limited to the statics of simple machines (the balance of forces), and did not include dynamics or the concept of work. During the Renaissance the dynamics of the Mechanical Powers, as the simple machines were called, began to be studied from the standpoint of how far they could lift a load, in addition to the force they could apply, leading ...

  3. Power (physics) - Wikipedia

    en.wikipedia.org/wiki/Power_(physics)

    Power is the rate with respect to time at which work is done; it is the time derivative of work: =, where P is power, W is work, and t is time. We will now show that the mechanical power generated by a force F on a body moving at the velocity v can be expressed as the product: P = d W d t = F ⋅ v {\displaystyle P={\frac {dW}{dt}}=\mathbf {F ...

  4. Work (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Work_(thermodynamics)

    Thermodynamic work is one of the principal kinds of process by which a thermodynamic system can interact with and transfer energy to its surroundings. This results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, [1] or cause changes in electromagnetic, [2] [3] [4] or gravitational [5] variables.

  5. Electricity - Wikipedia

    en.wikipedia.org/wiki/Electricity

    Electric power is the rate at which electric energy is transferred by an electric circuit. The SI unit of power is the watt, one joule per second. Electric power, like mechanical power, is the rate of doing work, measured in watts, and represented by the letter P. The term wattage is used colloquially to mean "electric power in watts."

  6. First law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/First_law_of_thermodynamics

    The work done on the system is defined and measured by changes in mechanical or quasi-mechanical variables external to the system. Physically, adiabatic transfer of energy as work requires the existence of adiabatic enclosures. For instance, in Joule's experiment, the initial system is a tank of water with a paddle wheel inside.

  7. Mechanical equivalent of heat - Wikipedia

    en.wikipedia.org/wiki/Mechanical_equivalent_of_heat

    In the history of science, the mechanical equivalent of heat states that motion and heat are mutually interchangeable and that in every case, a given amount of work would generate the same amount of heat, provided the work done is totally converted to heat energy.

  8. AOL Mail

    mail.aol.com/d?reason=invalid_cred

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Work function - Wikipedia

    en.wikipedia.org/wiki/Work_function

    The photoelectric work function is the minimum photon energy required to liberate an electron from a substance, in the photoelectric effect. If the photon's energy is greater than the substance's work function, photoelectric emission occurs and the electron is liberated from the surface. Similar to the thermionic case described above, the ...