Search results
Results from the WOW.Com Content Network
The ancient Greek understanding of physics was limited to the statics of simple machines (the balance of forces), and did not include dynamics or the concept of work. During the Renaissance the dynamics of the Mechanical Powers, as the simple machines were called, began to be studied from the standpoint of how far they could lift a load, in addition to the force they could apply, leading ...
The Feynman Lectures on Physics is a physics textbook based on a great number of lectures by Richard Feynman, a Nobel laureate who has sometimes been called "The Great Explainer". [1] The lectures were presented before undergraduate students at the California Institute of Technology (Caltech), during 1961–1964.
In the history of science, the mechanical equivalent of heat states that motion and heat are mutually interchangeable and that in every case, a given amount of work would generate the same amount of heat, provided the work done is totally converted to heat energy.
Energy and Power is a 1962 science book for children by L. Sprague de Camp, illustrated by Weimer Pursell and Fred Eng, published by Golden Press as part of The Golden Library of Knowledge Series. [1] [2] It has been translated into Portuguese and Spanish. [1]
Power is the rate with respect to time at which work is done; it is the time derivative of work: =, where P is power, W is work, and t is time. We will now show that the mechanical power generated by a force F on a body moving at the velocity v can be expressed as the product: P = d W d t = F ⋅ v {\displaystyle P={\frac {dW}{dt}}=\mathbf {F ...
Thermodynamic work is one of the principal kinds of process by which a thermodynamic system can interact with and transfer energy to its surroundings. This results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, [1] or cause changes in electromagnetic, [2] [3] [4] or gravitational [5] variables.
The Eternal Source of Energy of the Universe, Origin and Intensity of Cosmic Rays, New York, October 13, 1932; Tesla on Power Development and Future Marvels, New York World Telegram, July 24, 1934; The New Art of Projecting Concentrated Non-dispersive Energy Through Natural Media, 1935; A Machine to End War, Liberty, February 1935
The work done on the system is defined and measured by changes in mechanical or quasi-mechanical variables external to the system. Physically, adiabatic transfer of energy as work requires the existence of adiabatic enclosures. For instance, in Joule's experiment, the initial system is a tank of water with a paddle wheel inside.