Ads
related to: solving systems by elimination worksheetteacherspayteachers.com has been visited by 100K+ users in the past month
- Lessons
Powerpoints, pdfs, and more to
support your classroom instruction.
- Try Easel
Level up learning with interactive,
self-grading TPT digital resources.
- Assessment
Creative ways to see what students
know & help them with new concepts.
- Resources on Sale
The materials you need at the best
prices. Shop limited time offers.
- Lessons
Search results
Results from the WOW.Com Content Network
While systems of three or four equations can be readily solved by hand (see Cracovian), computers are often used for larger systems. The standard algorithm for solving a system of linear equations is based on Gaussian elimination with some modifications.
Animation of Gaussian elimination. Red row eliminates the following rows, green rows change their order. In mathematics, Gaussian elimination, also known as row reduction, is an algorithm for solving systems of linear equations. It consists of a sequence of row-wise operations performed on the corresponding matrix of coefficients.
Cramer's rule, implemented in a naive way, is computationally inefficient for systems of more than two or three equations. [7] In the case of n equations in n unknowns, it requires computation of n + 1 determinants, while Gaussian elimination produces the result with the same computational complexity as the computation of a single determinant.
The field of elimination theory was motivated by the need of methods for solving systems of polynomial equations. One of the first results was Bézout's theorem, which bounds the number of solutions (in the case of two polynomials in two variables at Bézout time).
LU decomposition can be viewed as the matrix form of Gaussian elimination. Computers usually solve square systems of linear equations using LU decomposition, and it is also a key step when inverting a matrix or computing the determinant of a matrix.
The first systematic methods for solving linear systems used determinants and were first considered by Leibniz in 1693. In 1750, Gabriel Cramer used them for giving explicit solutions of linear systems, now called Cramer's rule. Later, Gauss further described the method of elimination, which was initially listed as an advancement in geodesy. [5]
Ads
related to: solving systems by elimination worksheetteacherspayteachers.com has been visited by 100K+ users in the past month