Search results
Results from the WOW.Com Content Network
The Hofmann–Martius rearrangement in organic chemistry is a rearrangement reaction converting an N-alkylated aniline to the corresponding ortho and / or para aryl-alkylated aniline. The reaction requires heat, and the catalyst is an acid like hydrochloric acid. [1] [2]
The Hofmann rearrangement (Hofmann degradation) is the organic reaction of a primary amide to a primary amine with one less carbon atom. [ 1 ] [ 2 ] [ 3 ] The reaction involves oxidation of the nitrogen followed by rearrangement of the carbonyl and nitrogen to give an isocyanate intermediate.
Hofmann Isonitrile synthesis, Carbylamine reaction; Hofmann product; Hofmann rearrangement; Hofmann–Löffler reaction, Löffler–Freytag reaction, Hofmann–Löffler–Freytag reaction; Hofmann–Martius rearrangement; Hofmann's rule; Hofmann–Sand reaction; Homo rearrangement of steroids; Hooker reaction; Horner–Wadsworth–Emmons ...
In organic chemistry, a rearrangement reaction is a broad class of organic reactions where the carbon skeleton of a molecule is rearranged to give a structural isomer of the original molecule. [1] Often a substituent moves from one atom to another atom in the same molecule, hence these reactions are usually intramolecular.
While the Barton reaction has not enjoyed the popularity or widespread use of many other organic reactions, together with the mechanistically similar Hofmann–Löffler reaction it represents one of the first examples of C-H activation chemistry, a field which is now the topic of much frontline research in industrial and academic chemistry circles.
This organic reaction is closely related to the Hofmann elimination, but the base is a part of the leaving group. Sulfoxides can undergo an essentially identical reaction to produce sulfenic acids, which is important in the antioxidant chemistry of garlic and other alliums. Selenoxides likewise undergo selenoxide eliminations.
Nucleophilic substitutions can proceed by two different mechanisms, unimolecular nucleophilic substitution (S N 1) and bimolecular nucleophilic substitution (S N 2). The two reactions are named according tho their rate law, with S N 1 having a first-order rate law, and S N 2 having a second-order. [2] S N 1 reaction mechanism occurring through ...
A stirred BZ reaction mixture showing changes in color over time. The discovery of the phenomenon is credited to Boris Belousov.In 1951, while trying to find the non-organic analog to the Krebs cycle, he noted that in a mix of potassium bromate, cerium(IV) sulfate, malonic acid, and citric acid in dilute sulfuric acid, the ratio of concentration of the cerium(IV) and cerium(III) ions ...