enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Checking whether a coin is fair - Wikipedia

    en.wikipedia.org/wiki/Checking_whether_a_coin_is...

    Plot of the probability density f(r | H = 7, T = 3) = 1320 r 7 (1 − r) 3 with r ranging from 0 to 1. The probability for an unbiased coin (defined for this purpose as one whose probability of coming down heads is somewhere between 45% and 55%)

  3. Fair coin - Wikipedia

    en.wikipedia.org/wiki/Fair_coin

    If a cheat has altered a coin to prefer one side over another (a biased coin), the coin can still be used for fair results by changing the game slightly. John von Neumann gave the following procedure: [4] Toss the coin twice. If the results match, start over, forgetting both results. If the results differ, use the first result, forgetting the ...

  4. Probability - Wikipedia

    en.wikipedia.org/wiki/Probability

    A simple example is the tossing of a fair (unbiased) coin. Since the coin is fair, the two outcomes ("heads" and "tails") are both equally probable; the probability of "heads" equals the probability of "tails"; and since no other outcomes are possible, the probability of either "heads" or "tails" is 1/2 (which could also be written as 0.5 or 50%).

  5. Feller's coin-tossing constants - Wikipedia

    en.wikipedia.org/wiki/Feller's_coin-tossing...

    Feller's coin-tossing constants are a set of numerical constants which describe asymptotic probabilities that in n independent tosses of a fair coin, no run of k consecutive heads (or, equally, tails) appears. William Feller showed [1] that if this probability is written as p(n,k) then

  6. Why do we toss coins into fountains? - AOL

    www.aol.com/why-toss-coins-fountains-160126436.html

    Some well-known fountains can collect thousands of dollars in coins each year. According to an NBC report from 2016, the Trevi Fountain accumulated about $1.5 million in coins that year. (The ...

  7. Bertrand's box paradox - Wikipedia

    en.wikipedia.org/wiki/Bertrand's_box_paradox

    Bertrand's box paradox: the three equally probable outcomes after the first gold coin draw. The probability of drawing another gold coin from the same box is 0 in (a), and 1 in (b) and (c). Thus, the overall probability of drawing a gold coin in the second draw is ⁠ 0 / 3 ⁠ + ⁠ 1 / 3 ⁠ + ⁠ 1 / 3 ⁠ = ⁠ 2 / 3 ⁠.

  8. Discover the latest breaking news in the U.S. and around the world — politics, weather, entertainment, lifestyle, finance, sports and much more.

  9. Martingale (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Martingale_(probability...

    A gambler's fortune (capital) is a martingale if all the betting games which the gambler plays are fair. The gambler is playing a game of coin flipping. Suppose X n is the gambler's fortune after n tosses of a fair coin, such that the gambler wins $1 if the coin toss outcome is heads and loses $1 if the coin toss outcome is tails. The gambler's ...