Search results
Results from the WOW.Com Content Network
The weak interaction does not produce bound states, nor does it involve binding energy – something that gravity does on an astronomical scale, the electromagnetic force does at the molecular and atomic levels, and the strong nuclear force does only at the subatomic level, inside of nuclei.
In particle physics, the electroweak interaction or electroweak force is the unified description of two of the fundamental interactions of nature: electromagnetism (electromagnetic interaction) and the weak interaction. Although these two forces appear very different at everyday low energies, the theory models them as two different aspects of ...
The nuclear force is distinct from what historically was known as the weak nuclear force. The weak interaction is one of the four fundamental interactions, and plays a role in processes such as beta decay. The weak force plays no role in the interaction of nucleons, though it is responsible for the decay of neutrons to protons and vice versa.
The weak interaction or weak nuclear force is responsible for some nuclear phenomena such as beta decay. Electromagnetism and the weak force are now understood to be two aspects of a unified electroweak interaction — this discovery was the first step toward the unified theory known as the Standard Model.
Measurements in 2017 give the weak charge of the proton as 0.0719 ± 0.0045 . [4]The weak charge may be summed in atomic nuclei, so that the predicted weak charge for 133 Cs (55 protons, 78 neutrons) is 55×(+0.0719) + 78×(−0.989) = −73.19, while the value determined experimentally, from measurements of parity violating electron scattering, was −72.58 .
In particular, under weak isospin SU(2) transformations the left-handed particles are weak-isospin doublets, whereas the right-handed are singlets – i.e. the weak isospin of ψ R is zero. Put more simply, the weak interaction could rotate e.g. a left-handed electron into a left-handed neutrino (with emission of a W − ), but could not do so ...
The Standard Model of particle physics is the theory describing three of the four known fundamental forces (electromagnetic, weak and strong interactions – excluding gravity) in the universe and classifying all known elementary particles.
bosons (see weak mixing angle), each vertex factor includes a factor , where is the third component of the weak isospin of the fermion (the "charge" for the weak force), is the electric charge of the fermion (in units of the elementary charge), and is the weak mixing angle.