Search results
Results from the WOW.Com Content Network
The positive predictive value (PPV), or precision, is defined as = + = where a "true positive" is the event that the test makes a positive prediction, and the subject has a positive result under the gold standard, and a "false positive" is the event that the test makes a positive prediction, and the subject has a negative result under the gold standard.
The basic marginal ratio statistics are obtained by dividing the 2×2=4 values in the table by the marginal totals (either rows or columns), yielding 2 auxiliary 2×2 tables, for a total of 8 ratios. These ratios come in 4 complementary pairs, each pair summing to 1, and so each of these derived 2×2 tables can be summarized as a pair of 2 ...
Predictive value of tests is the probability of a target condition given by the result of a test, [1] often in regard to medical tests.. In cases where binary classification can be applied to the test results, such yes versus no, test target (such as a substance, symptom or sign) being present versus absent, or either a positive or negative test), then each of the two outcomes has a separate ...
On the other hand, a test result very far from the cutoff generally has a resultant positive or negative predictive value that is lower than the predictive value given from the continuous value. For example, a urine hCG value of 200,000 mIU/ml confers a very high probability of pregnancy, but conversion to binary values results in that it shows ...
In a classification task, the precision for a class is the number of true positives (i.e. the number of items correctly labelled as belonging to the positive class) divided by the total number of elements labelled as belonging to the positive class (i.e. the sum of true positives and false positives, which are items incorrectly labelled as belonging to the class).
Higher values are occasionally seen and lower values are very common. Nonetheless, the utility (that is the benefit obtained by making decisions using the test) provided by a test with a correlation of .35 can be quite substantial. More information, and an explanation of the relationship between variance and predictive validity, can be found ...
Also, in this case, the positive post-test probability (the probability of having the target condition if the test falls out positive), is numerically equal to the positive predictive value, and the negative post-test probability (the probability of having the target condition if the test falls out negative) is numerically complementary to the ...
The interpretation of a p-value is dependent upon stopping rule and definition of multiple comparison. The former often changes during the course of a study and the latter is unavoidably ambiguous. (i.e. "p values depend on both the (data) observed and on the other possible (data) that might have been observed but weren't"). [69]