Search results
Results from the WOW.Com Content Network
In the physical science of dynamics, rigid-body dynamics studies the movement of systems of interconnected bodies under the action of external forces.The assumption that the bodies are rigid (i.e. they do not deform under the action of applied forces) simplifies analysis, by reducing the parameters that describe the configuration of the system to the translation and rotation of reference ...
In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body. They are named in honour of Leonhard Euler. Their general vector form is
In physics, a rigid body, also known as a rigid object, [2] is a solid body in which deformation is zero or negligible. The distance between any two given points on a rigid body remains constant in time regardless of external forces or moments exerted on it. A rigid body is usually considered as a continuous distribution of mass.
Traditionally the Newton–Euler equations is the grouping together of Euler's two laws of motion for a rigid body into a single equation with 6 components, using column vectors and matrices. These laws relate the motion of the center of gravity of a rigid body with the sum of forces and torques (or synonymously moments) acting on the rigid body.
a cm is the linear acceleration of the center of mass of the body, m is the mass of the body, α is the angular acceleration of the body, and; I is the moment of inertia of the body about its center of mass. See also Euler's equations (rigid body dynamics).
A body is usually considered to be a rigid or flexible part of a mechanical system (not to be confused with the human body). An example of a body is the arm of a robot, a wheel or axle in a car or the human forearm. A link is the connection of two or more bodies, or a body with the ground.
Rigid body dynamics deals with the motion of objects that cannot change shape, size, or mass but can change orientation and position. To account for rotational energy and momentum, we must describe how force is applied to the object using a moment , and account for the mass distribution of the object using an inertia tensor .
In order to define the twist of a rigid body, we must consider its movement defined by the parameterized set of spatial displacements, D(t) = ([A(t)], d(t)), where [A] is a rotation matrix and d is a translation vector. This causes a point p that is fixed in moving body coordinates to trace a curve P(t) in the fixed frame given by