Search results
Results from the WOW.Com Content Network
Faraday's law of induction (or simply Faraday's law) is a law of electromagnetism predicting how a magnetic field will interact with an electric circuit to produce an electromotive force (emf). This phenomenon, known as electromagnetic induction , is the fundamental operating principle of transformers , inductors , and many types of electric ...
Electromagnetic or magnetic induction is the production of an electromotive force (emf) across an electrical conductor in a changing magnetic field. Michael Faraday is generally credited with the discovery of induction in 1831, and James Clerk Maxwell mathematically described it as Faraday's law of induction.
The Maxwell–Faraday version of Faraday's law of induction describes how a time-varying magnetic field corresponds to curl of an electric field. [3] In integral form, it states that the work per unit charge required to move a charge around a closed loop equals the rate of change of the magnetic flux through the enclosed surface.
The Faraday paradox or Faraday's paradox is any experiment in which Michael Faraday's law of electromagnetic induction appears to predict an incorrect result. The paradoxes fall into two classes: Faraday's law appears to predict that there will be zero electromotive force (EMF) but there is a non-zero EMF.
In three dimensions, the derivative has a special structure allowing the introduction of a cross product: = + = + from which it is easily seen that Gauss's law is the scalar part, the Ampère–Maxwell law is the vector part, Faraday's law is the pseudovector part, and Gauss's law for magnetism is the pseudoscalar part of the equation.
The two Maxwell equations, Faraday's Law and the Ampère–Maxwell Law, illustrate a very practical feature of the electromagnetic field. Faraday's Law may be stated roughly as "a changing magnetic field inside a loop creates an electric voltage around the loop". This is the principle behind the electric generator.
In the history of physics, a line of force in Michael Faraday's extended sense is synonymous with James Clerk Maxwell's line of induction. [1] According to J.J. Thomson, Faraday usually discusses lines of force as chains of polarized particles in a dielectric, yet sometimes Faraday discusses them as having an existence all their own as in stretching across a vacuum. [2]
Faraday's law of induction was suggestive to Einstein when he wrote in 1905 about the "reciprocal electrodynamic action of a magnet and a conductor". [15] Nevertheless, the aspiration, reflected in references for this article, is for an analytic geometry of spacetime and charges providing a deductive route to forces and currents in practice.